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Figure 1: Conversational gestures that were automatically synthesized from a motion capture database to match a novel audio segment.

Abstract
Plausible conversations among characters are required to generate the ambiance of social settings such as a restaurant, hotel
lobby, or cocktail party. In this paper, we propose a motion synthesis technique that can rapidly generate animated motion for
characters engaged in two-party conversations. Our system synthesizes gestures and other body motions for dyadic conver-
sations that synchronize with novel input audio clips. Human conversations feature many different forms of coordination and
synchronization. For example, speakers use hand gestures to emphasize important points, and listeners often nod in agreement
or acknowledgment. To achieve the desired degree of realism, our method first constructs a motion graph that preserves the
statistics of a database of recorded conversations performed by a pair of actors. This graph is then used to search for a motion
sequence that respects three forms of audio-motion coordination in human conversations: coordination to phonemic clause,
listener response, and partner’s hesitation pause. We assess the quality of the generated animations through a user study that
compares them to the originally recorded motion and evaluate the effects of each type of audio-motion coordination via ablation
studies.

CCS Concepts
• Computing methodologies → Motion capture; Motion processing;

1. Introduction

Interactive and immersive social experiences often include human
characters in conversations. These motions should be natural look-
ing for both the speaker and the listener so that they are not distract-
ing. The coordination between the speaker’s motion and the pri-
mary stresses of their audio have been extensively studied [LTK09;
LKTK10; CM11; CM14]. Listener response that is properly syn-
chronized to the speaker’s words also plays a key role in creating
an engaging rendition of these social settings [KH97; TG67]. In this
paper, we propose an efficient motion synthesis technique that gen-
erates gestures and body motions in dyadic conversation. The re-
sulting motion respects three forms of audio-motion coordination
in human conversations: the coordination to phonemic clause, lis-
tener response, and partner’s hesitation pause.

The psychological literature has discussed conversation coor-
dination between speakers and listeners as well as between the
speaker and their spoken words. In this paper, we focus on three
observations from that literature. The first is related to phonemic
clause. Phonemic clause is widely accepted as the basic unit in
speech encoding because it shows a systematic relationship to body
movement. Therefore it has been used to synthesize speaker mo-
tions in prior work [BD62; KH97; LTK09]. Phonemic clause is de-
scribed as a group of words that have one strongly stressed word,
also known as the primary stress. The start, peak, and end mark-
ers of these clauses provide guidance about how to synthesize the
speaker’s motions.

The second observation is related to listener response. Dittmann
and Leewellyn show that listeners vocally respond to speakers at
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the end of a phonemic clause [TG67]. Inspired by their work, we
assess whether vocal listener response can be used to synthesize
listener behaviors. The vocal listener response are words that seek
clarification or brief acknowledgment/reinforcement sounds such
as “yes”, “um-hmm”, “yeah”, “I see”. We focused on the latter set
of sounds in this work.

The third observation is that when the speaker hesitates or
pauses, listeners often nod as a response. Although Dittmann and
Leewellyn show that listeners do not always vocally respond to hes-
itation pauses, we assess whether listeners respond to hesitation
pauses using body movements, such as nodding. If the answer to
this question is yes, then hesitation pauses can also be used to syn-
thesize plausible listener behaviors. Similar to listener response, we
focused on the brief sounds that speakers make while reasoning and
thinking, such as “er”, “uh”, “you know”.

In this paper, we describe a motion synthesis technique that au-
tomatically creates human motions that respect these three observa-
tions for a novel segment of audio from a dyadic conversation. For
all three observations, we conducted experiments to verify these
hypotheses in our captured dataset and then modeled this synchro-
nization as a search constraint in the motion synthesis process. The
key insight behind our approach is that we can leverage the inherent
audio-motion coordination in the original database of recordings by
matching the talking and listening audio channels of the new audio
input with the original audio recording in the database. We factor
in the start, peak, and end of the phonemic clause, and start/end of
listener response and partner’s hesitation pause.

At the core of our approach is a motion graph that is constructed
and then searched with the three observations as constraints. Mo-
tion graphs have been used very successfully in the synthesis of
locomotion with a sparse set of synthetic transitions. For example,
Lee and colleagues describe a system that only allows transitions on
contact change states (touchdown and liftoff of the feet) [LCR*02].
Treuille and colleagues blend subsequences that start/end during
flight or mid-stance [TLP07]. This sparse set of synthetic transi-
tions creates graphs for locomotion that are rich enough to al-
low the generation of a variety of motions but small enough to be
searched efficiently, usually with an optimization function that ap-
proximates energy consumption [KGP02; LCR*02; SH07]. Con-
versational gestures do not fit easily into this framework because
there is no obvious analog to the contact change states of locomo-
tion for the insertion of synthetic transitions. Conversations also
are not “optimal” in the sense of minimum use of energy and ges-
tures/body movements have a wide set of stylistic variation because
there is no balance requirement to constrain the motion as there is
with locomotion.

We address these issues by creating synthetic transitions that
mimic the statistics of the natural transitions and adaptively down-
sampling the data based on pose change. Given a new audio track,
the search finds a motion sequence that has the expected synchro-
nization for natural conversation. The richness of conversation ges-
tures requires a significantly larger motion graph than what was
needed for locomotion. To deal with the size of the graph and the
lack of an optimality criterion for conversation gestures, we adopt a
stochastic greedy search to find a high quality animated sequence.

We demonstrate the efficacy of this approach by conducting a

leave-one-out study where one clip is held out as a test clip, and
then the resulting synthesized motion is compared to the original
motion for that clip. In a perceptual study, the synthesized motions
were judged as more natural 30% of the time. We also evaluate the
effects of the two listener-related constraints with ablation stud-
ies. The results searched with all constraints are rated as signif-
icantly better than the results searched without listener response
constraints; these results demonstrate the importance of modeling
listener response.

1.1. Contributions

The main contributions of this work are

• An efficient motion synthesis technique that is based on stochas-
tic greedy search. Audio-motion coordination is achieved by
three types of constraints: phonemic clause constraints for
speaker behaviors, listener response constraints and partner’s
hesitation pause constraints for listener behaviors.
• An improved motion graph construction process that is effec-

tive for conversational gestures. The process automatically de-
termines the cost thresholds for adding new transition edges so
that the resulting graph achieves a good balance between transi-
tion smoothness and style diversity.
• A 30-minute conversational database recorded with two actors.

The database has been annotated with audio labels including
phonemic clause, phonemic clause peaks, hesitation pause, vo-
cal listener response, as well as coarse motion labels such as
gesturing and nodding. This database is available at https:
//www.cs.cmu.edu/~dyadic-conversation/.

2. Related Work

In this section, we first briefly introduce the literature related to
speaker motions of body, hand, head and fingers, then discuss the
related study on synthesizing listener behaviors, and introduce re-
lated database and annotation tools, and finally conclude with a
brief discussion on motion graph technique.

Speaking motion has been studied extensively and various tech-
niques have been developed to model speech movements using
behavior trees, markup languages, and statistical models [CVB01;
LM06; KKM*06; NKAS08; XPM14; LM13; TMMK08]. Levine
and colleagues map speech motions to audio prosody with Hid-
den Markov Models (HMMs) and Conditional Random Fields
(CRFs) [LTK09; LKTK10]. Chiu and colleagues model the co-
ordination between audio and motion for speeches with machine
learning techniques such as Deep Belief Nets, Deep Conditional
Neural Fields, and a combination of CRFs and Gaussian pro-
cess models [CM11; CM14; CMM15]. Stone et al. and Kopp
et al. develop data-driven systems that synthesize motion and
speech segments together by reordering the combined captured
data [SDO*04; KB12]. Sadoughi and Busso introduce a hybrid
rule-based and data-driven system that retrieves gestures from a
dataset of motions corresponding to the speech [SB15].

The most similar work to ours for speaker motion is that of
Fernandez-Baena et al. which synthesizes gesture for speech based
on prosody and gesture strength, and adopts a motion graph tech-
nique for motion synthesis [FMA*14]. Similar to their work, we
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factor in the prosody features to search the speaker’s motions based
on phonemic clauses. But while they model motion constraints,
we leverage the inherent audio-motion coordination in the origi-
nal recordings by matching the talking and listening audio chan-
nels of the new audio input with the original audio recording in the
database. The biggest benefit of search using audio is reducing the
requirements for motion labeling. Another key difference between
their work and ours is that we synthesize motions for dyadic con-
versations instead of single-person speech.

Previous researchers also studied head and finger motions
for speakers. Ben-Youssef et al. build HMMs for head mo-
tions [BSB13]. Mu et al. model head movement patterns with Clas-
sification and Regression Trees and create motions based on lexi-
cal and prosodic features [MTCY10]. Jörg et al. introduce a data-
driven method to automatically add finger motions to body mo-
tions for characters giving a speech [JHS12]. Wheatland et al. auto-
mate hand motions by Principal Component Analysis [WWS*15].
Ding et al. present systems that synthesize head motions and eye-
brow movements for a single speaker with a Hidden Markov model
and Bi-Directional Long Short Term Memory (BLSTM) [DPA13;
DZX15]. Barbulescu et al. develop a model for speaker’s head mo-
tions with different attitudes from audio prosody and capture a
dataset of head motions from actors who performed as if another
person is standing in front of them [BRB17]. Jin et al. present a
deep learning model that generates head and eye motion in three-
party conversations [JDZD19].

Psychology studies have shown the importance of interaction in
listener behaviors. Knapp and Hall discuss the literature on interac-
tion synchrony [KH97] which is the coordination of the speech and
movement between two or more people in a conversation. For ex-
ample, listeners always nod at the end of a phrase where a speaker
makes a point. McDonnell et al. report that people can detect inter-
character synchronization between characters using body motion
alone and human sensitivity to such synchronization is not affected
by the number of speakers or topics [MEDO09]. Ennis et al. ob-
tain similar results on human sensitivity for inter-character syn-
chronization in three-character conversations and report no effect
for whether characters are female or male [EMO10].

Our system not only models speaker behaviors, but also listener
behaviors. Early work on listener behaviors employed hand-crafted
rules or a hand-designed markup language. Cassell et al. intro-
duce a rule-based system for multiple agents by generating and
analyzing dialogue [CPB*94]. Gratch and colleagues develop a
behavior mapping that correlates detected speaker events to lis-
tener motion behaviors in human-to-virtual interactions [GOL*06;
GWG*07]. Marsella et al. present a framework using a hybrid
of lexical and prosody information. The listener in their system
performs head movements that mirror the speaker with some de-
lay [MXL*13]. Instead of synthesizing motions based on linguistic
and speech components, Jan and Traum synthesize conversational
motions using behavior trees [JT05]. Sun et al. determine conver-
sation events based on agent attributes and spatio-temporal con-
text and create motions using behavior trees [SSH*12]. In recent
work, Greenwood et al. model speaker and listener head motions
using BLSTM [GLM17]. Ahuja et al. propose a model based on
temporal convolutional network that predicts upper-body motions

Input Audio (novel) Audio Constraints

Output 
Motion

Database Prep.
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Search and Synthesis 
(Sec 7.)

Figure 2: An overview of our motion synthesis system. The system
takes in captured audio and motion sequences of dyadic conver-
sations as input, and extracts motion features and audio features
to create a motion database. From this database, the system con-
structs a motion graph that can be searched to find motion clips
that match a novel input audio clip.

from an audio clip and the partner’s motions in dyadic conversa-
tions [AMMS19]. In contrast to their work, our system does not re-
quire partner’s motions as input and is able to generate motions for
both characters. In addition to dyadic conversations, Joo et al. pre-
dicts body motions from the partner’s motions using Convolutional
Autoencoder in three-party conversations [JSCS19].

We captured our own dataset for dyadic conversations. The au-
dio is annotated using the IBM Speech to Text service [IBM18]
and then the transcription and audio segmentation is manually cor-
rected. The motion is annotated with an automatic algorithm to the
level of gesturing and nodding, which is then used in the database
analysis and hypothesis validation. Others have developed annota-
tion tools for more detailed annotation and specifically for head
motion. Martell developed an annotation scheme named FORM
that annotates gestures based on kinematics [Mar02]. Kipp and
colleagues introduce a scheme for hand/arm gesture phases using
the ANVIL video annotation tool [Kip01; KNA07]. Vandeventer et
al. contribute a dataset of head motions reconstructed from images
from different views [VARM15].

Our work is a data-driven system that synthesizes full-body mo-
tions for both a speaker and a listener based on an enhanced motion
graph technique. Motion graphs are not new to animation [KGP02;
LCR*02; AFO03; MC12; HLL16] but have not been used exten-
sively for conversational gestures. Safonova and Hodgins intro-
duced an interpolated motion graph that allows a sequence of con-
straints to be matched more accurately [SH07]. McCann and Pol-
lard use very short motion fragments (0.1s) for an online controller
for locomotion [MP07].

3. System Overview

Our system synthesizes motions from the audio recordings of a
conversation between two characters. Figure 2 outlines our ap-
proach. First, we capture the motion and audio of a series of dyadic
conversations to create a database (Section 4). The database of each
character is further annotated with audio and motion features such
as emphasis and prosody. Second, our system builds motion graphs
by adding synthetic transition edges that preserve the statistics of
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the original frames (Section 6). Finally, our system synthesizes mo-
tions from the motion graphs with a stochastic greedy search algo-
rithm that achieves reasonable time and memory efficiency (Sec-
tion 7).

4. Database Preparation

We prepared an annotated database with synchronized audio and
motion data for dyadic conversations on different topics. The
database of each character is annotated with the start/peak/end tim-
ings of audio and prosody features for what the character hears and
says, and annotated with motion timings of strokes. In the following
subsections, we discuss the motion capture and database annotation
in detail.

4.1. Captured Database

We recorded 30 minutes of different types of dyadic conversations
in a motion capture lab. The motions were captured at 120 Hz and
downsampled to 30 Hz in our dataset. Our performers were trained
as actors at the undergraduate level and were instructed to have
free-ranging conversations. The recordings were done by a male
and a female actor. They were given only high-level guidance about
the conversation scenario, such as “a meeting with a friend that you
have not seen since high school” or “a job interview”, and they were
told which of five emotions to use in each conversations (happy,
sad, angry, excited, nervous). For each scenario, we recorded two
to three conversations featuring different levels of emotional inten-
sities, resulting in 17 conversations total. For simplicity of cleaning
and processing the data, we minimize contact by setting no objects
on the table and asking the actors not to intertwine their fingers or
touch their hairs.

The motion of the actors was captured with a Vicon motion cap-
ture system. In all conversation scenarios, the actors were sitting at
a table and facing each other. They wore 62 markers, including four
markers on the back of each hand. Finger motions were manually
animated by an artist after the capture due to the limitations of our
motion capture system. In addition, we recorded reference video of
the performance and synchronized it with the captured motion data.
Two character models were created using Adobe Fuse CC, and then
rigged by an artist to skeletons from the motion capture system to
avoid errors introduced by retargeting.

Our database consists of captured motion frames and the match-
ing audio. We use a Y-up and right-handed coordinate system. Each
motion frame is represented by {q,yr,∆xr,∆zr,∆qyaw}, where q is
the joint rotation relative to the parent joint and the root orientation
along the X and Z axes, yr is the root position along the vertical
axis (the Y axis), ∆xr and ∆zr are the root linear velocities on the
ground plane (the XZ plane), and ∆qyaw is the root angular velocity
along the vertical axis (the Y axis).

4.2. Audio Segmentation

The recorded audio is segmented into and labeled with one of four
labels: phonemic clause, vocal listener response, partner hesitation
pause, and idle. Phonemic clause is defined as a group of words
that has a strongly stressed word. The average number of words

2x time window

audio

motion window

A

C

B

Figure 3: The audio segment provides a window in which we can
look for a corresponding movement segment. A is an audio segment
(speech). B is an expanded time window that is twice as long as the
audio segment. The candidate time window for the matched move-
ment segment is C, which has been trimmed to remove any overlap
with neighboring audio or motion segments.

in a phonemic clause is 4.29± 2.16 for the female character and
3.86± 1.36 for the male in our database. Listener responses are
brief sounds such as “yes”, “um-hmm”, and “I see”. Partner hes-
itation pauses are the brief sounds that a subject’s partner makes
while reasoning and thinking, such as “er”, “uh” and “you know”.
The idle label indicates a segment that does not belong to one of
the other labels.

Audio segmentation and labeling is implemented with a tool
chain that includes the IBM Speech to Text service, our GUI tools,
word detection, and OpenSmile. First, we transcribe the input audio
to text, speaker id, and timestamps using IBM Speech to Text ser-
vice [IBM18]. In their output, brief hesitation pauses such as “uh”
and “hmm” are usually transcribed as “%hesitation”. We manu-
ally correct the output of the automatic process, i.e. transcription
and segmentation, using a GUI tool. Second, we defined a cor-
pus for hesitation pause and listener response, and each segmen-
tation is labeled automatically by detecting whether the words fall
into a corpus or category. Hesitation pauses are short sounds or a
short phrase with one or two words that indicates the speaker is
thinking, such as “huh”, “uh”, “umm”, “well”, or “%hesitation”
as transcribed in IBM Speech to Text. Examples of listener re-
sponse are “ah ha”, “wow”, “um hum”, “absolutely”. The word
corpus is a part of the database and is available at https://
www.cs.cmu.edu/~dyadic-conversation/. Finally, we
use OpenSmile [EWGS13] to extract prosody features from the in-
put audio, and identify the peak indicators by finding the local max-
ima of the fundamental frequency (F0) in each audio segment. Af-
ter audio processing, our system has knowledge about timings and
duration of the phonemic clause, listener response, and hesitation
pause for each actor in the motion database.

5. Statistics of Audio-Motion Co-occurrence

Our approach focuses on three hypotheses: 1. For the phonemic
clause, speakers often use hand gestures simultaneously for em-
phasis; 2. In the vocal listener response, listeners usually nod at the
same time. 3. When another character is hesitating or pausing, lis-
teners nod to respond. The question is how often do these forms
of coordination occur in our database and will they provide use-
ful guidance when synthesizing conversation motions? To answer
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Hypothesis
Matched
Motion

Total Audio
Segments

Rate

Female

PC - LH 319 515 62%
PC - RH 336 515 65%
PC - LH/RH 387 515 75%
LR - Nod 70 121 58%
PH - Nod 21 69 30 %

Male

PC - LH 314 614 51%
PC - RH 309 614 50%
PC - LH/RH 382 614 62%
LR - Nod 81 152 53%
PH - Nod 14 40 35 %

Table 1: Audio and motion co-occurrence. Each row lists the ag-
gregated data of audio motion co-occurrence for each hypothe-
sis and each actor. “Hypothesis” defines the type of audio and
motions, “matched motion” is the number of audio-motion co-
occurrences, and “rate” is the occurrence rate of the matched mo-
tion among all audio segments. In this table, PC: phonemic clause;
LH: left hand gesture; RH: right hand gesture; LR: listener re-
sponse. PH: partner hesitation;

these questions, we measure these three forms of audio-motion co-
occurrence.

To analyze whether motion and audio co-occur, we create an au-
tomatic motion segmentation and labeling process using the known
audio segmentation as a candidate time window to look for match-
ing body movements. Figure 3 illustrates this process. Second, mo-
tion segmentation is calculated based on relative joint speed curves.
Hand speeds are calculated in a local coordinate system based at
the shoulder, and head speeds are measured in a local coordinate
system based at the neck and then projected on the y axis (vertical).
Annotated audio and motion are shown in the supplementary video.

Let v denote joint speed, which is computed from the joint ro-
tations q using forward kinematics and derivatives [Par12]. A seg-
ment is labeled “idle” when the maximum joint speed is smaller
than an activation threshold. In our implementation, the activation
threshold θS is the minimum joint speed plus a small tolerance pro-
portional to speed range:

θS = min
S
(v)+αS×(max

S
(v)−min

S
(v)) (1)

where S is the set of frames in the entire clip. In our experiment, we
set αS = 0.1. The activation thresholds are determined adaptively
for each clip because motion clips that have different emotional
content contain different amounts of motion.

When a gesture stroke is detected, timings are detected
with crossing threshold events similar to Levine and col-
leagues [LTK09]. A segment starts when joint speed v is greater
than a preset threshold θW for the first time in the candidate time
window, and ends on the last frame within the candidate time win-
dow where the velocity is greater than the threshold. In our imple-
mentation, θW is computed adaptively based on the speed curve in
each candidate window W :

θW = min
W

(v)+αW×(max
W

(v)−min
W

(v)) (2)
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Figure 4: Statistics of transition cost ci, i+k for k = 2,3,4,5 (Equa-
tion 3). The purple bar represents the histogram of transition cost.
The black line represents the fitted Johnson SB distribution.

where αW is 0.1 in our experiment.

Let PC denote a phonemic clause, LH denote a left hand ges-
ture, RH denote a right hand gesture, LR denote a listener response,
and PH denote a partner hesitation pause. The frequency of co-
occurrence is shown in Table 1. In our experiment, we observed
that the phonemic clause has a strong co-occurrence with a left or
right hand gesture. The occurrence rate of a left or right hand ges-
ture around a phonemic clauses is 75% for the female character and
62% for the male character. Vocal listener response also has strong
co-occurrence with visual listener response such as nodding: 58%
for the female and 53% for the male. Partner hesitation pause also
shows co-occurrence with nodding, though this effect is less strong
compared to the other two. The occurrence rate of a nodding mo-
tion near a partner’s hesitation pause is 30% for the female and 35%
for the male.

The well-known theory that hand gestures have strong co-
occurrence with phonemic clause is supported by this statistical
analysis of our database. In addition, we also observed a strong co-
occurrence between vocal listener response and nodding, as well
as a weaker but still significant co-occurrence between partner’s
hesitation pause and nodding. Given this analysis, we developed
search constraints that maintain these statistics in the generated mo-
tion. We designed start/peak/end constraints for phonemic clauses
which is similar to previous work, and proposed listener response
constraints and hesitation pause constraints. As we focus on short
sounds or a short phrase with one or two words for listener re-
sponses and hesitation pauses, only start/end timings are consid-
ered for these two constraints.

6. Motion Graph Construction with Distance Distribution

In order to generate natural conversational motions, our system
needs to construct a motion graph that is rich enough to allow
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the generation of a variety of motions but small enough to allow
efficient search. Synthetic transitions added to the graphs should
appear as natural as the captured motions. In this section, we
first introduce the standard pipeline for motion graph construction
and then discuss why creating a motion graph for conversation is
more difficult than for locomotion. Finally, we illustrate a statistics-
guided approach to address these challenges.

A motion graph MG is composed of states and transitions. Each
state is a motion frame in the database as defined in Section 4.1
and its associated audio signal (the fundamental frequency F0 in
our implementation). A transition in a motion graph G indicates
that a character can naturally move from one state to another in two
consecutive frames. The graph construction process initially adds
all original transitions between consecutive frames in the captured
motions to the motion graph, and proceeds to find and add synthetic
transitions between non-consecutive motion frames to the graph.

The key to constructing a motion graph that yields novel and
natural-looking motions is to identify new transitions that are in-
distinguishable from those in the original captured motion, at least
after blending. To evaluate whether a new transition from frame i to
frame j yields a plausible motion, Lee and colleagues estimate the
probability of transitioning based on a measure of frame similar-
ity [LCR*02]. Similarly, our system calculates a the transition cost
ci, j between the two frames. A lower cost indicates higher like-
lihood of a natural transition. The transition cost from frame i to
frame j is defined as the weighted sum of distances between the
pose in frame i and frame j− 1. We assume that any pairs of con-
secutive frames in the original dataset are natural transitions. Un-
der this definition, the transition cost from frame i to frame i+ 1
is 0, which is consistent with this assumption. Let p and ṗ de-
note joint positions and velocities relative to root joint, which is
computed from the joint rotations q using forward kinematics and
derivatives [Par12]. The transition cost ci, j is

ci, j = d(pi, p j−1)+wvd(ṗi, ṗ j−1) (3)

where wv scales the velocity term to match the range of the po-
sition term. The first term d(pi, p j−1) measures the joint position
difference between frame i and frame j−1:

d(pi, p j−1) =
Nb

∑
b=0

wb‖(pi[b]− p j−1[b])‖ (4)

where wb are weights for each joint and Nb is the number of all
joints. We set the weight to be zero for finger joints and 1 for other
joints in our experiments. The second term d(ṗi, ṗ j−1) measures
the joint velocity distance in the same formula as the first term.

Pruning techniques are often employed in previous work to keep
the motion graph concise and the search process efficient. Lee and
colleagues allowed transitions only on contact change states, i.e.,
when one or both feet touch or leave the ground [LCR*02]. Sa-
fonova and Hodgins allowed transitions inside the contact phase
but only the optimal segments were kept [SH07]. Similarly, we al-
lowed transitions only on key states. A key state is either a state
where audio status changes, or represents a keyframe. Keyframes
are sampled adaptively according to joint position change, with
more samples when a joint is moving and fewer samples when it
is not. In our implementation, 22.25% of the states are key states.

Before SCC After SCC
k #states #edges #states # edges
2 50,568 130,397 3,899 13,182
3 50,568 408,234 40,673 376,300
4 50,568 1,823,041 47,854 1,810,036

Table 2: Number of states and edges before and after removing
states not in the largest strongly connected component (SCC) dur-
ing the graph construction process. In our experiments, we ob-
served k = 3 yields the best results.

Furthermore, given the transition probability between all pairs of
frames, Lee et al. propose that transitions with a transition proba-
bility less than a chosen threshold should not to be added to the
graph [LCR*02]. In other words, those transitions with a transi-
tion cost higher than a chosen threshold should not be added to
the graph. This threshold of transition costs represents a trade-off
between transition quality and graph connectivity. If the threshold
is low, the transitions added to the motion graphs will look more
natural, but the number of transitions that can be added is reduced.
On the other hand, if the threshold is too high, the process will iden-
tify many synthetic transitions but some of them are bad transitions
which will affect motion quality.

Manually setting a threshold is not too difficult for a motion
graph consisting of locomotion because the motion is cyclic and
therefore provide many opportunities for good transitions. Setting
a reliable threshold is harder for conversational motions because
of the significant variance in the gestures and postures that occur
during conversation. Usually this threshold is set through multiple
iterations of trial and error. Our method adaptively sets the thresh-
olds using statistics collected from captured database.

We fit the histogram of transition costs to different analytic mod-
els and observed that the Johnson SB distribution fits our data best
(lowest residual sum of squares between predicted and empirical
values). Figure 4 illustrates the distribution of ci, i+k which in-
dicates the cost of transitioning from frame i to frame i + k and
k ∈ {2,3,4,5}. Most ci,i+k values are distributed near 0 because of
resting motions.

A smaller k creates synthetic transitions that are of higher qual-
ity. Specifically, setting k = 1 results in all synthetic transitions
having the same quality as the original transitions. In practice, this
causes too few synthetic transitions being added to the graph. For-
tunately, by adopting motion blending techniques [Par12], lower
quality transitions can still be used without creating unnatural mo-
tions. In general, more transitions in the graph means more candi-
dates during searching, which leads to more diverse results. In our
experiments, we found that k = 3 yields the best balance between
transition quality and connectivity. Table 2 summarizes the number
of states and edges in the graphs with different k values. We ob-
served that when k = 2, less than 10% of the frames remain after
removing states that are not in the largest strongly connected com-
ponent [Tar72]. This number grows to 80% when k = 3. Further in-
creasing k results in motion graphs with stronger connectivity but
also bad transitions that affect the quality of the resulting motion.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Y. Yang, J. Yang, and J. Hodgins / Statistics-based Motion Synthesis for Social Conversations

input

Figure 5: Illustration of the search process. In this example,
nstart = 3,nsave = 4. At each step, nsave low-cost actions (orange)
are saved. States that result from taking these actions are the start
states for the next step. In the final step, the best complete path
(purple) is selected.

In our implementation, we select a 95% confidence level for the
transition cost ci, i+k as a threshold and k = 3.

After constructing the motion graph, motions can be synthesized
by finding a path on the graph. A sequence of poses that are stored
on the path is a motion clip for a character. The quality of the con-
structed graphs are evaluated in the perceptual study.

7. Motion Synthesis Algorithm

Synthesizing motions using a motion graph is equivalent to search-
ing for a path on the graph that matches a set of constraints while
minimizing an optimization criteria. Each node on the resulting
path is a frame (a state in the graph) that can be played in order to
produce an animation. In this section, we first introduce the frame-
work of synthesizing motion clips using stochastic greedy search.
Next, we explain the key component in this search algorithm that
finds matching motion segments given an input audio segment. Fi-
nally, we illustrate how to augment results with facial animation.

7.1. Stochastic Greedy Search

Finding a path through a locomotion graph is typically performed
with an optimal search algorithm such as the Anytime A* algo-
rithm [LGT04; SH07] or branch-and-bound algorithms [KGP02].
However, conversational motions do not have a global optimiza-
tion criteria such as energy consumption. Many possible gestures
and postures may be appropriate for a given speech segment. For
this reason, our system employs a stochastic greedy search algo-
rithm to find a plausible solution in a best-effort attempt.

Given a novel input audio clip, our system first analyzes and seg-
ments the audio using the same technique as used for the original
database (Section 4.2). Next, our system synthesizes a motion se-
quence by matching the audio segments in order. Figure 5 illus-
trates the search process. Let [A0,A1,A2, ...] denote the input au-
dio segments. At start time t0, the system picks a random set of
graph states as the start states. Starting from this set of start states
(indicated by gray dots at t0), the algorithm finds multiple motion
segments (all lines between t0 and t1) from the motion graph that

matches the input audio segment A0. We explain how to find match-
ing motion segments for a specific audio segment Ai in Section 7.2.
Each candidate motion segment has a penalty cost that sums all
transition costs along the motion path. Note that transition costs are
calculated using Equation 3 as described in Section 6. Among all
motion segments that satisfy search constraints (the ends of these
segments are indicated by the dots at t1), only nsave low-cost can-
didate segments (orange) are sampled and preserved. In our imple-
mentation, we set nsave = 200. Segments that involve only original
transitions will receive a lower cost than those involving many syn-
thetic transitions, and thus are more likely to be preserved for the
next round.

In the next round, the end states of the preserved candidate seg-
ments (orange dots at t1) are used as new start states. The algorithm
repeats these steps until all input audio segments are processed,
and the path with the best score is returned as the solution (purple
line in Figure 5, right). The full-body motions are realized by play-
ing the poses pi that are stored at the states along the path in time
order. Root translations and rotations are computed by integrating
root velocity ∆xr,∆zr

i and angular velocity ∆qyaw plus an initial root
translation and rotation given chair locations.

To smooth transitions, our system blends the neighboring frames
of the synthetic transition using a cosine function, and joint angles
are interpolated using the Slerp technique during blending [Sho85].

7.2. Finding Matching Motion Segments

One key component in our search algorithm is to find matching mo-
tion segments given an input audio segment. With motion graphs,
synthesizing motion segments that matches an audio input is to find
paths that satisfy audio constraints.

In classical motion graph techniques, user constraints are com-
monly expressed as spatial constraints, such as an approximate path
on the ground for the character to follow, or a goal location, or an
obstacle to avoid or leap over. In our application, user constraints
are temporal. Our insight is to find a path where the timings of
the new input audio matches the original audio associated with this
motion path (refer to associated audio below). This insight allows
us to model constraints purely on audio signals, and eliminates the
step of inferring motion constraints from audio signals and then
searching for a matching motion. The new motion should implicitly
model the three synchronization behaviors described above while
avoiding the need to explicitly construct a model of those synchro-
nization behaviors.

In our system, search constraints consist of four types: phone-
mic clause, vocal listener response, partner’s hesitation pause, and
idle. Each constraint restricts different audio types and requires
matching different timings between the input audio and the as-
sociated audio. Phonemic clause constraints require matching the
start/peak/end timings between the input audio and the associ-
ated audio. Vocal listener response constraints require matching the
start/end timings between the input audio and the associated audio.
Partner’s hesitation pause constraints require matching the start/end
timings in input audio and the associated audio at partner’s channel.
Idle constraints requires the audio type to be idle but no restriction
on timings. In our implementation, we set a tolerance of 0.1s for
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matching timings. Based on these definitions, a search constraint
could be derived from an input audio segment.

Given an audio segment Ai and a set of start states in the graph,
recursive depth-first traversal on motion graphs is performed to
find candidate motion paths which satisfy the audio constraint de-
rived from Ai. During the recursive depth-first traversal, our sys-
tem checks whether the associated audio on the path satisfies audio
types and the start/end timings (if the constraint is not idle con-
straint) at each step. Peak timings will be checked at the last step if
the constraint is a phonemic clause constraint.

7.3. Facial Animation

Facial animation is not the focus of this paper. However, to avoid
the distraction of rigid, unmoving faces, we augment the motions
with facial animations that are driven automatically from the input
audio using Motion Builder [Aut19]. Given the intended distant po-
sitioning of the background characters in the scene, this facial ani-
mation is sufficient to give the faces a sense of life without requiring
significant animation effort.

Eyeblinks are inserted by our system automatically according to
the audio peaks. Existing studies have revealed that eyeblinks occur
near the audio peaks [Sch64; Loe07], and the average frequency of
blinks is 26 per minute for conversational motions [BBC*97]. To
reproduce realistic eyeblinks, our system inserts an eyeblink at the
first audio peak point and at all subsequent audio peaks if at least
one second has passed since the last blink. Finally, additional blinks
are keyed randomly in any intervals in which no blink has occurs
for 5 seconds. The animation of each blink lasts 0.17 seconds, using
0.07s to close the eye and 0.1s to reopen the eye.

8. Experimental Evaluation

In Section 5, we have shown evidence that upheld the three hy-
potheses on audio-motion co-occurrence between phonemic clause
and hand gestures, between vocal listener response and nodding,
and between partner hesitation pause and nodding. Accordingly,
we have proposed four types of constraints including constraints on
phonemic clause (PC), constraints on vocal listener response (LR),
constraints on partner hesitation pause (HP), and idle constraints to
cover the rest of the frames. In this section, we evaluate the quality
of our results using a perceptual study and demonstrate the effects
of LR and HP constraints via an ablation study.

Since our technique is only dependent on the start/peak/end tim-
ings in prosody features of an input audio clip and its transcript, it
generalizes well to conversations from novel subjects. This gener-
alization ability is demonstrated by the results in the supplementary
video.

8.1. User Study Setup

To evaluate the quality of synthesized motions and the significance
of considering each type of constraint, we designed four pairwise
comparisons:

1. comparing the original captured motion to our results with all
constraints;

2. comparing synthesized results with all three constraints to result
including PC and PH constraints but leaving LR out;

3. comparing synthesized results with all three constraints to re-
sults including PC and LR constraints but leaving HP out;

4. comparing synthesized results with all three constraints to re-
sults with no constraints, i.e., only the motion quality objectives
of the original motion graph.

The first comparison is a quality test of our method. It studies how
synthesized motions that maintain all types of correlations compare
to original captured ground-truth. The latter three comparisons are
ablation studies for the different types of constraints.

During each user study session, a participant is presented with
several pairs of side-by-side videos. Each video features the same
conversation dialog, with motions sourced from two different tech-
niques showing side-by-side, randomly assigned to the left or right.
The total stimuli consisted of 20 (segments) x 4 (pairs) x 10 (repe-
titions) = 800 clips.

These 20 segments are randomly selected from the test cases in
leave-one-out tests. From the 17 captures in our dataset, we used
16 of them to construct a motion graph and left one out. Test cases
are obtained by sliding the test audio with a 15-second window and
14-second interval between windows. We use 15 seconds as win-
dow size because we hope participants will remain focused while
watching the whole clip. With the sliding-window technique, we
obtained 116 test cases. Our system can find a solution for 81 of
them when searching with all constraints, resulting 69.8% success
rate, and can find a solution for 100 of them if removing hesita-
tion pause constraints (86.2% success rate). We used SpireEngine
to render the videos for the user study [He20], and implemented the
skinning and blendshape computations in the Slang [HFF18] shad-
ing language.

Ethical approval was granted for all user studies, and partic-
ipants were recruited via Amazon MTurk. Each user study ses-
sion consists 20 rounds of comparisons that are randomly sam-
pled from all stimuli and lasts about 20 minutes. At the end of
each pair of videos, the participant is asked which motion they pre-
ferred. We adopted the force-choice methodology used by Chang
et al. [CYW*16], which forces a choice of the left or the right side.
A total of 40 people participated in our experiment, including 25%
female and 75% male. 50% of participants were of ages between
25 and 34, and 97.5% of them were under age 55. 80% of the par-
ticipants have no experience with animation, 17.5% of them have
less than 2 years experience with animation, and the rest 2.5% have
over 2 years experience.

8.2. Analysis of User Study

Figure 6 visualizes the responses from the user study. The results
suggest that the improvement by adding listener response con-
straints is statistically significant and our results are judged as better
than the original motion capture data in 31% of the tests, although
the captured motions are still significantly better than our results.

Comparison between ground-truth and our method. A to-
tal of 206 questions are asked to compare captured ground-truth
motions with motions synthesized using our method respecting all
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Motion capture
All constraints
All constraints
All constraints

All constraints
Without LR
Without HP
No constraints

31%69%
44%56%
53%47%
42%58%

Figure 6: User study that compares original captured motion with
our results, and compares the search results that respects all con-
straints with the search results without LR constraint, without HP
constraint, and with no constraints. Results marked with ? are
statistically significant (p < 0.03) according to 2-sample test for
equality of proportions with continuity correction and two sided
alternatives.

three types of correlations. 64 of the responses (31%) favor synthe-
sized motions over the ground-truth. That result is encouraging as
people are highly sensitive to motion naturalness. Not surprisingly
the original motion capture data is still significantly better than our
results (χ2 = 57.563,d f = 1, p = 3.272e−14). The top comments
on why the participant favors the ground-truth over our synthesized
motions include that the ground-truth motions are more emotional
and more heated, and better matches the sound of hitting the table.
This suggests interesting future work to study how emotions and
contacts can be leveraged to further improve motion quality.

Ablation study on the impact of each type of correlations. In
the ablation tests, 108 out of 193 responses (56%) are in favor of the
synthesized results with all three constraints over the results with
PC and HP constraints only (leaving listener response constraint
out), suggesting that listener response correlation plays a significant
role in motion naturalness (χ2 = 5.0155,d f = 1, p = 0.02512).

Meanwhile, 116 out of 200 responses (58%) selected the syn-
thesized results with all three constraints over the search without
constraints, as expected. This result suggests that modeling con-
versation constraints has a positive effect on the generated motions
(χ2 = 9.61,d f = 1, p = 0.001935).

Interestingly, we find that 94 out of 201 responses (47%) are in
favor of the synthesized results with all three constraints over leav-
ing HP constraint out. This result means that explicitly considering
the correlation of partner hesitation pause does not significantly im-
pact on the final motion quality (χ2 = 1.4328,d f = 1, p = 0.2313).
This result is likely because the vocal listener response already cov-
ers the hesitating motions well, thus explicitly labeling and match-
ing hesitating states are not always necessary.

8.3. Computation Performance

As discussed in Section 6, we adaptively downsample frames and
only allow transitions at key states instead of at each frame while
constructing the graph. This optimization reduces the number of
candidate states for synthetic transitions by 78%, which translates
into a 20x speedup over a naive graph construction process that
considers all the states as candidates. Our motion graph consists
of approximately 50,000 states. Table 3 shows the wall-clock time
of our graph construction and search algorithms. The run-time per-
formance is measured on a machine with an Intel i9-9980XE CPU

procedure avg. tim (s) std. dev.
graph construction 47.94 3.30
search 1.16 0.56

Table 3: Wall-clock time for search and graph construction in the
leave-one-out tests. From the 17 captures in our dataset, we used
16 of them to construct a motion graph and left one out. A total of
116 test cases are obtained by sliding the test audio with 15-second
window and 14-second interval. Database in leave-one-out tests
has about 50,000 frames at 30 fps.

(18 cores at 3GHz) and 64GB memory. The current implementation
uses at most 4 cores and 16GB memory. On average, our graph con-
struction takes 50s. The average wall-clock time required to search
for a 15 s motion clip for one character is 1.16 s, which potentially
allows our system to be used interactively in scenarios where proper
scheduling is implemented.

9. Conclusion and Discussion

In this paper, we present a system for synthesizing conversational
motions that respect both speaker and listener behaviors. The key
insight is that the self and interaction synchrony in the original
recordings can be reproduced by finding a path on the motion
graph where the timing of the recorded audio signatures in the mo-
tion graph database matches that of the new input audio in both
the speaking and listening channels. We contribute a database of
face-to-face dyadic conversations featuring a variety of emotions
and scenarios (friends talking, arguing couples, job interviews).
We extend the motion graph technique to include conversational
constraints based on statistics computed from a motion capture
database and add a threshold tuning scheme during graph construc-
tion based on the distance distribution in the database.

In designing proper constraints for motion synthesis, we tested
three hypotheses about audio-motion co-occurrence for speaker
and listener behaviors, and further tested their effects in search by
including them as constraints. Our results show the importance of
considering vocal listener response as constraints, in addition to the
well-accepted constraints on phonemic clause. Furthermore, we de-
veloped a stochastic greedy search algorithm to efficiently generate
motion sequence that respects these audio constraints.

While these results have shown significant improvement by re-
specting listener response constraints, they also illustrate some lim-
itations in our method. The biggest limitation is that our method
does not model emotions and semantics of a conversation. This
leads to overly neutral gestures for emotional moments, e.g. mo-
ments of excitement or anger, as compared to the ground-truth
motion. Modeling emotion as an audio magnitude constraint that
measures excitement, or as a frequency constraint that measures
how fast a speaker talks would be an interesting direction for fu-
ture work. Semantics could be supported by detecting iconic words
and using text constraints to search and synthesize motions. While
our system can easily be extended with more features and search
constraints, we would likely need a significantly larger database to
ensure that an acceptable path still exists in the motion graph for the
entire input audio when those additional constraints are applied.
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Our system focuses on studying the audio-motion co-occurrence
on head and hand motions. In additional to these motions, other
type of body movements such as changing the posture to move
closer to the conversation partner or mirroring the speaker posture
as a listener may also be important. Studying how to model these
behaviors and how these behaviors affect motion realism would be
an interesting direction for future work.

Our method currently does not model contact with the environ-
ment. When the input audio contains a collision sound of a char-
acter’s hand with the table, the synthesized motion should also in-
clude a corresponding collision. One way to factor in this kind of
environment interaction is to adopt the hierarchical motion editing
technique introduced by Lee and colleagues [LS99]. Furthermore,
handling the contact with objects and self contact are also an inter-
esting future system extension.

As with all motion graph approaches, synthesized motions main-
tain individual styles in the dataset. For example, the female charac-
ter in our dataset has a variety of postures, such as sitting straight or
slouching. At the same time, we have a limitation as other motion
graph approach that the range of synthesized motions is limited to
what is in the database. For example, our system cannot synthesize
motions with characters sitting side by side or conversations that
involve other emotions beyond those recorded in the database. Ex-
tending our system to handle these scenarios would likely require
capturing a dramatically larger database. One way to augment data
is re-timing motions, such that motion graphs have more flexibility
to match an input audio clip by speeding up or slowing down cap-
tured motions. Another way is to have a larger database with pose-
tracking techniques. With the development of pose-tracking tech-
niques in computer vision, we expect that obtaining a large-scale
motion database may soon become significantly easier [CSWS17].
We are interested in scaling up our system to handle databases that
are larger by several orders of magnitude. A significantly larger
database would likely require a hierarchical approach for graph
construction and searching [LCL06]. We hypothesize that such a
hierarchy can be built by constructing a set of smaller subgraphs
representing particular kinds of motions based perhaps on emotion
or on semantics. These subgraphs can then be connected by con-
structing synthetic transitions between them.

Besides motion graph approaches, we have seen a growing in-
terest in learning gestures using deep neural networks. Kucherenko
and colleagues introduce a model that learns Japanese gestures us-
ing a denoising variational autoencoder [KHH*19]. Ferstl and col-
leagues address gesture dynamics by training generative adversar-
ial models with gesture phasing [FNM20]. Alexanderson and col-
leagues propose learning gestures using normalizing flow with a
style-control framework and experiment controls over the hand
height, velocity, gesture radius, and gesture symmetry [AHKB20].
Although their models are trained for a single subject, their frame-
works are good starting points for designing dyadic conversa-
tion models. In additional to dyadic conversation, three-party con-
versations are also studied in recent work [JDZD19; dCYS*19;
JSCS19]. While motion graph approaches are good at maintaining
styles and high motion quality in terms of dynamics and smooth-
ness from the captured dataset, learning based methods have the

potential for fast inference after models are trained, and may find
more diverse results.
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