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Abstract

We present a new method for detecting interest points

using histogram information. Unlike existing interest point

detectors, which measure pixel-wise differences in image

intensity, our detectors incorporate histogram-based rep-

resentations, and thus can find image regions that present

a distinct distribution in the neighborhood. The proposed

detectors are able to capture large-scale structures and dis-

tinctive textured patterns, and exhibit strong invariance to

rotation, illumination variation, and blur. The experimen-

tal results show that the proposed histogram-based inter-

est point detectors perform particularly well for the tasks

of matching textured scenes under blur and illumination

changes, in terms of repeatability and distinctiveness. An

extension of our method to space-time interest point detec-

tion for action classification is also presented.

1. Introduction

Detecting distinctive invariant low-level features in im-

ages is a fundamental aspect of many computer vision tasks.

The effectiveness of existing local feature detectors has

been well demonstrated through varied vision applications,

e.g., [8], [4], [16], [23], [27]. Thorough experimental com-

parisons and performance evaluations on popular interest-

point and local-feature detectors are also available in the lit-

erature of computer vision [21], [24]. More recently, Tuyte-

laars and Mikolajczyk have presented an overview of local

invariant feature detectors [28]. These evaluations and liter-

ature surveys provide a systematic way to gain insight into

the characteristics of widely used feature detection meth-

ods. It has been shown that interest point detectors such as

the Harris corner detector [11] and the Hessian-based inter-

est point detectors [2], [15] are important building blocks of

various local invariant feature detectors. For example, the

Harris-Affine and Hessian-Affine detectors [18], [19], [21]

are based on affine normalization around Harris and Hessian

points; the SURF detector [1] relies on the determinant of

the Hessian matrix for selecting the location and the scale;

the SIFT detector [17] eliminates unstable edge responses

by analyzing the Hessian matrix of the intensity surface.

The Harris corner detector [11] is considered to be one of

the most reliable interest point detectors [24]. It is popular

owing to its robustness to rotation, illumination variation,

and image noise. Briefly, the Harris detector uses the sec-

ond moment matrix, also called the auto-correlation matrix,

to explore the local statistics of image intensity variations,

with patches shifted by a small amount in different direc-

tions. The locations of interest points can be identified by

analyzing the trace and the determinant of the second mo-

ment matrix, derived from first-order derivatives of image

intensity function. The second moment matrix can be di-

rectly extended to RGB color space by combining the three

color channels [22]. The underlying idea of the Hessian-

based detectors is similar to the Harris corner detector. The

Hessian detector explores the second-order Taylor expan-

sion of the (Gaussian convolved) intensity surface, and the

resulting Hessian matrix that consists of the second-order

derivatives describes the local image structures. Similarly,

the trace and the determinant of the Hessian matrix can also

be used to decide the interest points. More detailed discus-

sions on interest point detectors and local feature detectors

can be found in [21], [24], [28].

This paper presents a new approach to the detection of

interest points using histogram information. The proposed

detectors are able to identify interest points that exhibit a

distinctive distribution of low-level features in a local area.

Whereas histogram-based representations have been widely

used by the feature descriptors, e.g., HOG [6], SIFT [17],

GLOH [20], existing interest point detectors simply use

pixel-based (intensity or color) representations to charac-

terize local features. For images consisting of highly tex-

tured objects such as brick walls or trees, using pixel-based

information to detect interest points may yield too many re-

sponses of less stable corners—Shifting a textured patch

by a small amount may cause a significant increase in the

sum of squared differences, even though the variations in

the distributions of texture patterns should be insignificant.

Moreover, since popular descriptors for matching or object

recognition are built from histograms of low-level features,

the feature descriptions extracted from the locations of Har-



ris or Hessian points may not be distinctive enough to dis-

tinguish the detected regions having similar distributions of

textured patterns.

One of the aim of this paper is to bridge the gap be-

tween local feature detectors and descriptors. We incorpo-

rate histogram-based representations into the detection pro-

cess of interest points. The proposed interest point detec-

tors have strong invariance to rotation, illumination varia-

tion, and blur. Scale invariance can be achieved by search-

ing for stable points across several possible scales. Kadir

et al. have presented a salient point detector that also takes

account of local intensity histograms [12], [13]. Their algo-

rithm uses the intensity histogram to measure the saliency

by local entropy, and seeks to extract local regions that have

high complexity. However, local entropy might not be a suf-

ficient criterion to find stable points for matching, as shown

through the experiments in [21]. Furthermore, for a textured

image that exhibits high entropy values almost everywhere,

a region of low entropy in the image should be considered

salient as well. Dorkó and Schmid [7] introduce descrip-

tion stability as a criterion for scale selection: They use

the common Harris and Laplacian detectors to find interest

points, and at each location of detected interest point, the

SIFT descriptors under various scales are computed. The

scale for which the change of description is minimal will

be chosen. Our detectors, on the other hand, are directly

built on the histogram-based representations and similarity

measures, and thus do not need to compute the SIFT de-

scriptions in advance. The experimental results show that

the histogram-based interest point detectors perform well

for image matching tasks, especially in matching textured

scenes under blur and illumination changes.

2. Detecting Histogram-based Interest Points

For each pixel (xi, yi) in a given image patch, we may

derive a discrete quantity b(xi, yi) from the low-level image

features such as color or oriented gradient. Assume that the

discrete quantity has L levels (bins) in the interval [1, L].
The function b : R2 → {1, . . . , L} thus associates to the

pixel (xi, yi) the index b(xi, yi) of the histogram bin corre-

sponding to the low-level image feature of that pixel.

At each pixel location (x, y), the value of the kth bin of a

weighted histogram h(x, y) = {hk(x, y)}k=1,...,L is given

by

hk(x, y) =
1

Z

∑

(xi,yi)
∈Ω(x,y)

w(xi−x, yi−y) 1{b(xi,yi)=k} , (1)

where w(x, y) = e−(x2+y2)/2σ2

is a Gaussian weighting

function, and 1{·} is the indicator function. The set Ω(x, y)
defines a neighborhood around (x, y), and Z is a normaliza-

tion term to ensure
∑L

k=1 hk(x, y) = 1. Note that the value

of σ in w(x, y) and the size of the neighborhood Ω depend

on the chosen scale of interest points to be detected.

Given a shift (∆x,∆y) and a pixel (x, y), we may use

the Bhattacharyya coefficient [3], [5] to measure the simi-

larity between the histogram h(x, y) around (x, y) and the

histogram h(x + ∆x, y + ∆y) around the shifted pixel lo-

cation. The Bhattacharyya coefficient between h(x, y) and

h(x+∆x, y +∆y) is defined by

ρ =

L
∑

k=1

√

hk(x, y) hk(x+∆x, y +∆y) , (2)

where ρ ∈ [0, 1], and ρ = 1 if the two histograms are iden-

tical. The Bhattacharyya coefficient ρ can be approximated

by a Taylor series truncated to the second terms, that is,

ρ ≈ 1

2

L
∑

k=1

√

hk(x, y)hk(x, y)

+
1

2

L
∑

k=1

hk(x+∆x, y +∆y)

√

hk(x, y)

hk(x, y)

+
1

2

[

∆x ∆y
]

H(x, y)

[

∆x
∆y

]

= 1 +
1

2

[
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]

H(x, y)

[

∆x
∆y

]

. (3)

A more detailed derivation is given in the appendix. The

Hessian matrix H(x, y) in (3) is a 2-by-2 symmetric ma-

trix containing the second-order partial derivatives of the

Bhattacharyya coefficient ρ. Since the Bhattacharyya co-

efficient has a local maximum at (∆x,∆y) = (0, 0), the

Hessian matrix of ρ is negative semidefinite. More specifi-

cally, H(x, y) is defined by

H(x, y) =
L
∑

k=1

√

hk(x, y)





∂2
√

hk(x,y)

∂x2

∂2
√

hk(x,y)

∂x∂y

∂2
√

hk(x,y)

∂x∂y

∂2
√

hk(x,y)

∂y2



 .

(4)

By taking into account the Gaussian weighting function in

(1), we obtain the elements of H(x, y) as

H1,1(x, y) =

(

x2

σ4
− 2

σ2

)

− 1

Z2σ4

L
∑

k=1

m2
X

hk(x, y)
, (5)

H2,2(x, y) =

(

y2

σ4
− 2

σ2

)

− 1

Z2σ4

L
∑

k=1

m2
Y

hk(x, y)
, (6)

H1,2(x, y) = H2,1(x, y) =
xy

σ4
− 1

Z2σ4

L
∑

k=1

mXmY

hk(x, y)
,

(7)

where

mX =
∑

(xi,yi)
∈Ω(x,y)

xi w(xi − x, yi − y)1{b(xi,yi)=k} , (8)



and

mY =
∑

(xi,yi)
∈Ω(x,y)

yi w(xi − x, yi − y)1{b(xi,yi)=k} . (9)

Matrix H(x, y) captures the histogram structure of the

local neighborhood around pixel (x, y). If the absolute val-

ues of both eigenvalues of H(x, y) are large, then a shift

(∆x,∆y) in any direction will result in a significant drop

of the Bhattacharyya coefficient, and therefore, the his-

togram h(x, y) of some low-level image features around

(x, y) should be quite dissimilar to the histograms around

neighboring pixels (x +∆x, y +∆y). We consider such a

pixel to be an interest point. The problem of identifying in-

terest points can be handled through observing the eigenval-

ues of the Hessian matrix corresponding to the local Bhat-

tacharyya coefficient. As shown by Harris and Stephens for

the Harris corner detector [11], we also do not need to com-

pute the eigenvalues explicitly. The absolute values of the

eigenvalues for Hessian matrix H(x, y) can be modeled by

a response function R on the determinant and the trace:

R(H) = det(H)− κ trace2(H) , (10)

where we use κ = 0.1 for the experiments presented in this

paper. If a Hessian matrix H has a high response, it is more

likely that its both eigenvalues are of large absolute values.

The response function is used to decide whether a pixel is

an interest point. Non-maximum suppression is applied to

the responses of all pixels, and local maxima are selected as

nominated interest points.

3. Extracting Local Invariant Regions for

Matching

We describe in this section how to apply our interest

point detector to the matching tasks that rely on the de-

tection of local invariant regions. We present two possible

choices of histogram-based representations for our method,

and discuss the process of selecting the scale.

3.1. Histogram­based Image Representations

We may represent an image patch by a histogram of low-

level image features. Different types of histogram repre-

sentations can be incorporated into our method to build the

histogram-based interest point detectors. Described below

are two types of histograms that are tested in our experi-

ments.

Color Histogram. Color histograms are commonly used

in object tracking and image retrieval as the image repre-

sentation. We employ the color representation proposed

by Comaniciu et al. [5] to describe local image structures.

We quantize each color channel (256 levels assumed) in

RGB color space into 8 bins, and obtain a histogram with

8×8×8 = 512 bins. The quantization function is given by

b(x, y) = ⌊Rx,y/32⌋×82+⌊Gx,y/32⌋×8+⌊Bx,y/32⌋+1,

where Rx,y , Gx,y , and Bx,y are the RGB values of pixel

(x, y). By plugging the function b into the weighted his-

togram in (1), as well as mX and mY in (8) and (9), we

obtain the Hessian matrix H(x, y) in (4) for identifying in-

terest points.

Oriented Gradient Histogram. Intensity gradients can

also be used as the low-level features for constructing his-

tograms. We quantize the orientation of gradient into 8 bins,

each of which covers a 45-degree angle. The magnitude of

gradient is also divided into 8 bins, and thus the resulting

histogram contains 8 × 8 = 64 bins. Because the magni-

tude of gradient might provide useful information for de-

scribing local regions, the formulation of histogram in (1)

can be modified to include the magnitude of gradient:

hk(x, y)

=
1

Z

∑

(xi,yi)
∈Ω(x,y)

w(xi − x, yi − y) ‖g(xi, yi)‖α 1{b(xi,yi)=k} ,

(11)

where ‖g(xi, yi)‖ is the magnitude of gradient at pixel

(xi, yi), and α is a scaling parameter. The equations of mX

and mY in (8) and (9) also need to be modified correspond-

ingly to get the Hessian matrix.

3.2. Scale Selection for Detecting Local Invariant
Features

Scale issue aside, the proposed histogram-based detec-

tion algorithm can be used as a stand-alone interest point de-

tector. Nevertheless, for vision applications such as match-

ing or object recognition, it is critical to find local features

that are invariant to scale changes. We may explore the scale

space by taking account of σ of the weighted histogram in

(1). A small variation ∆σ can be added to σ, and we get an

equation of the Bhattacharyya coefficient subject to σ and

σ+∆σ, similar to the formulation in (2). In our implemen-

tation we use a more straightforward approach by detecting

interest points at each given scale based on the response

R(H) in (10). In addition to the scale, the ‘shape’ of the

local region can also be determined by analyzing the Hes-

sian matrix H . The estimation of scale and shape helps to

extract the feature descriptions more faithfully for match-

ing. We show in next section that the local invariant regions

selected by our method are effective in matching scenes un-

der blur and illumination variations. Fig. 1 illustrates some

examples of detected interest points using color histograms

and oriented gradient histograms.



(a) (b)

(c) (d)

Figure 1. Detected interest points. (a)&(b) Using color histogram.

(c)&(d) Using oriented gradient histogram.

4. Experiments

We apply the proposed histogram-based interest point

detectors to the tasks of matching scenes under different

imaging conditions. The performance is evaluated by the

measures of repeatability and distinctiveness. We also

present an extension of our method to the detection of

space-time interest points in video sequences, for the ap-

plication of action classification.

4.1. Image Matching

This experiment is focused on applying our method to

the matching problem. We use the test data provided by

[21] to evaluate our approach. The test data have eight

sets of images, and each set contains six images with five

homographies between the first reference image and the

other five images. Different variations in imaging condi-

tions for structured and textured scenes are included in the

test data: they are viewpoint changes, scale changes, image

blur, JPEG compression, and illumination changes.

The two histogram-based detectors presented in Section

3 are performed to find interest points in the test images.

For the detector with color histogram, we apply prepro-

cessing to the input images with histogram equalization and

Gaussian smoothing for each RGB channel. For the detec-

tor based on the oriented gradient histogram, only the in-

tensities of the input images are used. In this experiment,

we omit the magnitude term of the oriented gradient his-

togram in (11) by setting the scaling parameter α to zero.

We detect the interest points with eight scales: We have

{σd}d=1,...,8 = {2, 2
√
2, 4, . . . , 16

√
2} for the weighting

function w(x, y) in (1), and the corresponding sizes of the

neighborhood are {|Ωd(x, y)|}d=1,...,8 = {15 × 15, 21 ×
21, 29× 29, . . . , 159× 159}, where the diameter of neigh-

borhood is computed by 2 · round(3.5σ) + 1. The image

region defined by the neighborhood of an interest point will

be used for performance evaluation. In practice, instead of

increasing the Gaussian-kernel scale σ and the neighbor-

hood size, we downsample the input images by a step of
√
2

and use a fixed neighborhood size of 15 × 15 with σ = 2.

This approximation would result in a slight loss of matching

accuracy, but could greatly reduce the computational cost.

The evaluation is based on two metrics, the repeata-

bility and the matching score, as described in [21].

To compute the two metrics, we use the Matlab code

provided by Mikolajczyk et al. [21] (available from

http://www.robots.ox.ac.uk/∼vgg/research/affine/). A high

repeatability score means that the detector can stably find

corresponding regions, given by the interest points, in two

scenes with some transformation. Apart from the repeata-

bility, for practical applications such as matching or recog-

nition, it would be important to find corresponding regions

that produce distinctive feature descriptions. The extracted

regions need to be distinguishable from other regions, so

that the correct correspondences can be identified through

comparing the similarities between their feature descrip-

tions. The distinctiveness of the detected regions is mea-

sured by the matching score .

We present the repeatability and the matching scores of

our detectors in Fig. 2 and Fig. 3. For comparison, we also

include the results of MSER, Harris-Affine, and Hessian-

Affine detectors from [21]. Note that, as pointed out in [21],

there is no detector which outperforms others in all the ex-

periments. The detector using color histogram generally

performs better than the one using oriented gradient his-

togram. Our results in Fig. 2 are not as good as the state-of-

the-art, especially when the scenes present large changes in

scale and viewpoint angle. However, our detectors achieve

very good performance for the tasks of matching scenes

with blur and illumination changes, see Fig. 3. Our de-

tectors perform particularly well for the Trees sequence, as

shown in Fig. 3(c). The number of correct nearest neighbor

matches produced by our detectors usually ranges from 100
to 1000, depending on the image content.

Complexity and Required Computation Time. Assume

that the input image contains N pixels, and the histogram

has L bins. Let |Ω1| denote the size of the smallest neigh-

borhood for computing the histogram with approximation

of downsamping. The values of hk(x, y), mX , and mY

are computed by convolution. Thus the complexity is

O(NL × |Ω1|) for a single scale. If D different scales

are taken into consideration, then we get the final complex-

ity O(NLD × |Ω1|). Given that an input image of size

1000 × 700 pixels, L = 512 bins, D = 8 scales, and

|Ω1| = 15 × 15 pixels, it would take 40 seconds to com-

pute all the required responses of R(H) in Matlab on an

Intel Core2 Duo 2.33GHz PC.
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Figure 2. Repeatability and matching score. (a) Scale change for the textured scene. (b) Scale change for the structured scene. (c) Viewpoint

change. (d) JPEG compression. Our detectors do not perform very well on these data sets, in comparison with the best results of other

popular detectors presented in [21].
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Figure 3. Repeatability and matching score. (a) Blur for the structured scene. (b) Illumination change. (c) Blur for the textured scene. (d)

Viewpoint change for the textured scene. Our detectors perform very well on these data sets, in comparison with the best results reported

in [21].

4.2. Action Classification with Histogram­based In­
terest Point Detectors in Space­Time

In this experiment, we show how to extend our

histogram-based method to the detection of space-time in-

terest points, and apply the detector to the problem of ac-

tion classification. Similar ideas have been explored in [14],

[25], [26] for event and action analysis.

Detecting Space-Time Interest Points. In this section

we show how to use our method to detect space-time inter-

est points in a video. We employ the human action database

provided by [10]. The database contains ten kinds of ac-

tions, and for each action we use nine videos of the same

action performed by different people. We ignore the silhou-

ette information since our method does not assume a known

background. We choose the 64-bin oriented gradient his-

togram to perform our detector, and use a 3D Gaussian with

σ = 2 for computing the weighted histogram. Given a video



run one-hand wave jack

Figure 4. Examples of detected space-time interest points for three

types of actions.

sequence, we compute the 3-by-3 Hessian matrix H(x, y, t)
of a space-time cube surrounding each pixel in each frame.

The 3-by-3 Hessian matrix can be easily derived from Eqs.

(4)-(9) by including the terms related to the time domain. In

our experiment the size of a space-time cube is 15× 15× 9
pixels, i.e., a cube consists of nine 15-by-15 patches ex-

tracted from the nine consecutive frames. The space-time

locations (x, y, t) with locally maximal responses of R(H)
are selected as candidates. We sort the candidates by the re-

sponse values and keep the top 270 candidates to form the

set of space-time interest points. Some examples of detec-

tion results are shown in Fig. 4.

Action Classification. We try to make use of the space-

time cubes extracted by our histogram-based detector to

solve the problem of action classification on videos. Given

a video sequence Si, we carry out the aforementioned

scheme to select 270 interest points. The space-time cube

corresponding to each interest point generates a 1152-

dimensional feature vector by stacking the 128-dimensional

SIFT descriptions in nine frames. We then use affinity prop-

agation [9] to group the feature vectors in sequence Si into

Ki clusters. To compare two sequences Si and Sj , we com-

bine the cluster centers of Si and Sj to get (Ki +Kj) cen-

ters, and reassign the feature vectors in each sequence to

the new set of (Ki + Kj) centers. As a result, we obtain

two (Ki +Kj)-bin histograms for the two sequences. The

similarity between Si and Sj is given by the Bhattacharyya

coefficient between the two histograms. For every video se-

quence, we perform a leave-one-out test procedure. On each

test, we remove the test sequence from the database and use

the nearest-neighbor method to determine the class of the

test sequence. That is, for test sequence Si, we find the most

similar sequence Sj∗ in the database according to the Bhat-

tacharyya similarity measure. The result of leave-one-out

test is shown in Table 1. The average precision is 84.4%.

Our result is comparable to the state-of-the-art (82.6% by

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 88.9 0 0 0 11.1 0 0 0 0 0

a2 0 88.9 11.1 0 0 0 0 0 0 0

a3 0 33.3 44.4 0 22.2 0 0 0 0 0

a4 0 0 0 100 0 0 0 0 0 0

a5 0 0 22.2 0 77.8 0 0 0 0 0

a6 0 0 0 11.1 0 88.9 0 0 0 0

a7 0 0 0 0 0 0 100 0 0 0

a8 0 0 0 11.1 0 0 0 66.7 22.2 0

a9 0 0 0 0 0 0 0 11.1 88.9 0

a10 0 0 0 0 0 0 0 0 0 100

Table 1. Action confusion. a1-walk, a2-run, a3-skip, a4-jack, a5-

jump, a6-pjump, a7-side, a8-wave1, a9-wave2, and a10-bend.

[25]) that draws on more complex 3D SIFT descriptors and

uses SVM to train classifiers. In [25], the reported aver-

age precision of using stacking 2D SIFT descriptions is

only 47.8%. Note that the precision of leave-one-out test

on this database can be further improved if the background

and silhouette information is used to analyze the space-time

shapes [10], which is beyond the scope of this paper.

5. Conclusion

This paper presents a new criterion for detecting inter-

est points. The integration of low-level feature histograms

and interest-point detectors is achieved by introducing the

histogram-based similarity measure into the analysis of

Hessian matrix. Since most of the popular local region

descriptors are derived from histograms of low-level fea-

tures rather than pixel-wise representations, our method

equips local feature detectors with similar representations

to the descriptors. The experimental results show that the

histogram-based interest point detectors are less sensitive to

small-scale variations and thus more effective in matching

textured scenes under blur and illumination changes. In ad-

dition to the two histogram-based representations presented

in this paper, other types of low-level features such as Gabor

filter responses can also be incorporated into our framework

for constructing histograms. The promising results of solv-

ing matching and action classification problems suggest that

the histogram-based detectors should be useful for more ap-

plications in computer vision.
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Appendix

The Bhattacharyya coefficient ρ between two distributions

p = {pk}k=1,...,L and q = {qk}k=1,...,L is defined by ρ =
∑L

k=1

√
pk qk. Suppose that q is the target distribution, and

p(y) is a spatial-varying distribution depending on location y. If

we apply a shift δy to y, the Bhattacharyya coefficient between



p(y+ δy) and q can be approximated by the second-order Taylor

expansion

ρ =

L
∑

k=1

√

pk(y + δy) · qk (12)

≈
L
∑

k=1

√

pk(y)qk +
1

2

L
∑

k=1

∇pk(y)δy

√

qk

pk(y)

+
1

2
δy

T
H(y) δy (13)

where H(y) is the Hessian matrix of ρ at the location y. We may

replace ∇pk(y)δy by (pk(y + δy)− pk(y)) and obtain

ρ =

L
∑

k=1

√

pk(y + δy) · qk

≈ 1

2

L
∑

k=1

√

pk(y)qk +
1

2

L
∑

k=1

pk(y + δy)

√

qk

pk(y)

+
1

2
δy

T
H(y) δy . (14)

Let q = p(y), and the auto-similarity based on the Bhattacharyya

coefficient is given by

ρ̃ =

L
∑

k=1

√

pk(y + δy) · pk(y)

≈ 1

2

L
∑

k=1

√

pk(y)pk(y) +
1

2

L
∑

k=1

pk(y + δy)

√

pk(y)

pk(y)

+
1

2
δy

T
H(y) δy . (15)

Since p(y) is a probability distribution, we have
∑L

k=1
pk(y) =

∑L

k=1
pk(y + δy) = 1, and it follows that

ρ̃ ≈ 1 +
1

2
δy

T
H(y) δy . (16)
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