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1 Introduction

Hierarchical data structures such as the quadtree
(Klinger 1971) have proven to be a useful approach
to organizing information present in image data-
bases for use in applications in geographic informa-
tion systems, image databases, and computer
graphics (Samet 1984, 1990a, b). In this study we
are interested in comparing the storage require-
ments of a number of different quadtree representa-
tions in a static environment. In particular, we
present a detailed analysis of the pointer and point-
er-less representations in the context of a realistic
model of computer memory.

The rest of this paper is organized as follows. Sec-
tion 2 contains a brief review of related guadtree
data structures. Section 3 presents an overview of
the different quadtree representations that we con-
sider, while Section 4 contains the analysis of their
storage requirements. The analysis is interpreted
further in Section 5. Our approach is a general one
and is applicable to quadtrees that represent im-
ages of arbitrary dimensionality and resolution.
Our goal is to determine the maximum number
of quadtree nodes that can be stored in a fixed
amount of storage for an image of a given dimen-
sion and resolution (i.e., width). This is achieved
by computing the cutoff values, in terms of the
dimensionality and resolution of the image, at
which the number of nodes that can be stored using
the pointer representation requires less space than
a number of different implementations of the point-
er-less quadtree representation. These results are
interpreted by examining the actual cuttoff values
for images of different resolutions in two, three and
four dimensions.

2 Background

Quadtrees have been used to represent a number
of different types of spatial data. As an example,
consider the quadtree approach to two-dimension-
al region data as illustrated by Fig. 1. It is based
on the successive subdivision of the space contain-
ing a given region into four equal-size quadrants
until homogeneous blocks f{i.e, BLACK or
WHITE for a binary image) are encountered. Fi-
gure 1b is the block decomposition of the region
in Fig, la. This process is represented by a tree
of degree 4 (i.e., cach non-leaf node has four sons).
The root node corresponds to the entire space con-
taining the region. Each son of a node represents
a quadrant (labeled in order NW, NE, SW, SE)
of the area represented by that node. The leaf nodes
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1c 37 383940 57 585960
Fig. 1a—<. A region, its binary array, its maximal
blocks, and the corresponding quadtree. a Region. b
Block decomposition of the region in (a); blocks in
the region are shaded. ¢ Quadtree representation of
the blocks in (b)

Fig. 2. A point quadtree and the records it represents
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of the tree correspond to those blocks for which
no further subdivision is necessary. A leaf node
is said to be BLACK or WHITE, depending on
whether its corresponding block is entirely inside
or entirely outside of the represented region. A leaf
node at the maximum depth of the tree is called
a pixel. All non-leaf nodes are said to be GRAY.
The quadtree representation for Fig. 1b is shown
in Fig. 1c.

Our discussion and examples of the quadtree are
in the context of region data. Quadtrees and related
data structures have been frequently studied in ap-
plications involving multidimensional point data.
Most of these studies involved use of a variant
known as the point quadtree (Finkel and Bentley
1974) and the k-d tree (Bentley 1975) for searching
tasks. The difference between the region quadtree
and these representations is that the region quad-
tree makes use of regular decomposition, whereas
in the point quadtree (and the k-d tree) the actual
data are used to guide the decomposition process.
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For example, Fig. 2 is an example of a point quad-
tree for a set of cities, while Fig. 3 is its correspond-
ing region quadtree (termed a PR quadtree). Notice
that the shape of the point quadtree depends on
the order in which the cities are inserted, whereas
this is not the case for the PR quadtree. The k-d
tree (e.g., Fig. 4) is similar to the point quadtree
with the modification that decomposition alter-
nates between the x and the y coordinates (ie.,
each node has out degree 2). A region k-d tree has
also been defined and is termed a bintree (Knowl-
ton 1980; Tamminen 1984; Samet and Tamminen
1988). Beckley et al. (1985) reported on an empiri-
cal study comparing point quadirees and k-d trees.
They concluded that neither representation is best
for all queries. Matsuyama et al. (1984) also com-
pared other variants of k-d trees and PR quadtrees.
Other approaches include B-tree (Comer 1979)
variants such as the R-tree (Guttman 1984; Rous-
sopoulos and Leifker 1985; Faloutsos et al. 1987)
and the k-d-B-tree (Robinson 1981). However, they
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are not of interest to us, since they often result
in non-disjoint partitions of space.

In this paper our discussion and examples of the
quadtree are in the context of region data and regu-
lar decomposition quadtrees. Thus we do not deal
with point quadtrees and k-d trees. Note that since
our comparison of pointer and pointer-less quad-
tree representations is only concerned with the
number of blocks induced by the quadtree decom-
position, our results are equally applicable to
points, lines, faces, and other data for which the
quadtree or octree can be viewed as providing a
spatial index. In all of these cases, the quadtree
is used to decompose the data until some other
criterion of simplicity is satisfied [e.g, one point
per quadrant (Orenstein 1982; Nelson and Samet
1987), one line segment per quadrant (Samet and
Webber 1985), or one face per octant (Ayala et al.
1985; Carlbom et al. 1985; Fujimura and Kunii
1985)]. For a description of the vse of quadtrees

ATLAbé\
in a geographic database that includes points, lines,
and regions, see (Samet et al. 1984, 1987).

3 Quadtree representations

One of the prime motivations for the development
of the quadtree, and furthermore for different quad-
tree representations, has been a desire to save
space. The conventional quadtree implementation
is as a tree structure comsisting of two types of
nodes. Non-terminal nodes contain four pointers
corresponding to the four subtrees. Terminal nodes
contain four null pointers corresponding to the
empty subtrees. In the rest of this paper we will
be measuring the storage requirements in terms
of the number of leaf nodes, which will be denoted
by L. It is well known that the total number of
nodes in a quadtree is (4/3)-(L—1)+1 (Knuth
1973). Each node requires space for four pointers
where each pointer can be encoded with approxi-
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mately log(4/3)- L) bits. Thus the total storage nec-
essary for such a pointer representation is approxi-
mately (16/3)- L-log(4/3 - L) bits. Note that all loga-
rithms in this paper are with respect to base 2.
The pointer representation seems verbose and as
a result there has been a considerable amount of
inferest in pointer-less quadtree representations.
Pointer-less representations can be grouped into
two categories. The first represents the quadtree
as a traversal of its constituent nodes (Kawaguchi
and Endo 1980). For example, letting ‘B’, “W’, and
‘G’ correspond to BLACK, WHITE, and GRAY
nodes respectively, and assuming a traversal in the
order NW, NE, SW, and SE, then the quadtree
of Fig. 1 would be represented by

GWGWWBBGWGWBBBWBGBBGBBBWW.

This approach requires two bits to represent each
node in the quadtree. Therefore, a quadtree with
L leaf nodes requires approximately 2-(4/3)-L
bits.

The second approach treats the quadtree as a col-
lection of the leaf nodes comprising it. Each node
is represented by a pair of numbers (Gargantini
1982c¢). The first number is the depth (also referred
to as level) of the tree at which the node is located.
Assuming that the root is at level 0, and that the
maximum level value is ki, then we need log(h) bits
to represent the level of a node. The second number
is termed a locational code. There are a number
of choices for the second number. It can be repre-
sented by either a variable or a fixed number of
bits. Using a variable number of bits, one variant
of the locational code is formed by a concatenation
of base 4 digits corresponding to directional codes
that locate the node along a path from the root
of the quadtree. The directional codes take on the
values 0, 1, 2, 3 corresponding to quadrants NW,
NE, SW, SE, respectively. For example, the pair
of numbers (3,312) are decoded as follows: 312 is
the base 4 locational code and denotes a node at
level 3 that is reached by a sequence of transitions,
SE, NE, and SW, starting at the root. Using a fixed
number of bits, the locational code is formed by
interleaving the bits comprising the coordinate
values of a specific point in the leaf node (e.g., the
pixel in the lower left corner). A quadtree represen-
tation based on the use of locational codes is called
linear quadtree by Gargantini (1982a, c) (because
the addresses are keys in a linear list of nodes)
and a leafcode by Oliver and Wiseman (1983).

For the second approach described above we have

352

the following storage requirements. In each of its
two variants, each node requires two bits per level
of depth of the node plus a number of bits equal
to the base 2 logarithm of the depth of the node
in order to specify the level at which the node is
found.

The traversal-based pointer-less approach (i.e., the
first one discussed) is useful for operations that re-
quire each element in the tree to be visited in the
same order as the traversal that serves as the basis
of the representation. However, it is difficult to per-
form operations which require accessing elements
of the quadtree at random. For example, consider
the quadtree of Fig. 1. Suppose that we are given
a pointer to node F which is the NE son of node
Q. In order to locate the node which is the SE
son of node Q (i.e, P), we must sequentially visit
every node in the SW son of node Q (i.e., K). The
variant of the second pointer-less approach that
uses a variable number of bits to represent the
locational code is somewhat cumbersome be-
cause nodes are not uniformly represented. Thus
the variant that uses a fixed number of bits is more
general, and in the rest of this paper we shall use
it (and refer to it as a linear quadtree) in our com-
parison of the storage requirements of pointer and
pointer-less quadtree representations. In particu-
lar, for a quadtree with L leaf nodes and a maxi-
mum level of A, the fixed variant requires a total
of L-(2-h+log(h)) bits.

4 Analysis

When comparing pointer and pointer-less quadtree
representations, it is generally accepted that the
pointer representation is more flexible for pro-
gramming. On the other hand, pointer-less repre-
sentations have been viewed as being more com-
pact. This second property has been considered
particularly important when working with spaces
of dimensionality greater than two. In this section
we show that for a given maximum depth of a
quadtree and dimensionality of the space, there ex-
ists a cutoff value such that if the number of leaf
nodes is less than the cutoff value, then the pointer
quadtree representation is more compact than a
pointer-less representation that makes use of a
fixed number of bits.

In past analyses (Gargantini 1982a—c) the number
of bits required for the locational code of the linear




quadtree was allowed to vary with the maximum
depth of the quadtree, whereas in the pointer quad-
tree the width of each pointer field was constrained
to be the same regardless of the number of leaf
nodes that needed to be distinguished. Moreover,
the implementation of the pointer quadiree was
needlessly verbose. For example, past analyses as-
sume the existence of father links which, of course,
is not necessary for the proper use of pointer quad-
trees. In the following we examine a particularly
compact method of implementing a pointer quad-
tree and compare its storage requirements with
that of a linear quadtree. Our analysis ignores the
data fields and concentrates on the number of bits
necessary to represent the inherent tree structure
of the quadtree. We also describe the effect of vary-
ing the alignment requirements of pointers in terms
of bit and byte boundaries. We assume 8-bit bytes,
although it should be clear that the same analysis
can be applied to other byte sizes.

For a d-dimensional image containing L leaf nodes
such that the maximum level of any node is A,
the number of bits required by the lingar quadtree
is

L(d-h+log(h+1)). m

On the other hand, the situation for the pointer
quadtree is more complicated. A pointer quadtree
has two types of nodes (internal and external). In-
ternal nodes consist of 2¢ pointers, whereas external
nodes do not require pointers (see also Doctor and
Torborg 1981; Meagher 1982b; Yau and Srihari
1983; Okawara et al. 1988). However, we do need
to distinguish between the two node types. This
requires one bit. We propose to add this bit as
part of the pointer field that points at the node
being described rather than in the node being de-
scribed. This is analogous to a coding convention
used in threading (Knuth 1973) that distinguishes
between links and threads by stipulating that links
can be detected by virtue of pointing to nodes with
greater addresses, while threads point to nodes
with lesser addresses. Thus, in our implementation
no storage is attributed to the leaf nodes; instead,
all the excess storage is accounted for in the inter-
nal nodes. The number of internal nodes is

(L—1A2' 1)
which is bounded from above by

Li24Y).
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In our analysis we shall use this upper bound, as
it makes the manipulation of the equations more
tractable. It should be clear that the slight overesti-
mation of the number of nodes in the pointer quad-
tree will not affect our final results except for small
values of L. Thus at times our derived cutoff values
will be lower than they would be had we not over-
estimated the number of internal nodes (and hence
the total) in the quadtree. Interestingly, as we shall
see in Sect. 5, this overestimation affects the cutoff
value for the image in Fig. 1.

Note that each pointer field needs only to be wide
enough to distinguish between all the possible
nodes in a particular tree whose number is

L-(1+1/27—1))
or
L-24/(2% 1),

Thus the total number of bits needed to store a
pointer quadtree is

(/27— 1))-(2*- (1 +log(L- 29/2" = 1)))). 2)

Using Egs. (1) and (2) we see that in order for
the linear quadtree to be more compact (i.e., re-
quire less bits) than the pointer quadtree, the fol-
lowing relation must hold:

L-(d-h+log(h+1))
<(L/(2*—1))-(2* (1 +1og(L- 272" — 1)))). (3)

Factoring L out of Eq. (3) and letting m=2% and
n=2%—1 enables Eq. (3) to be rewritten as

d-h+log(h+ 1)< (m/n)-(1 +log(L-m/n)). 4)

Observe that m/n is approximately 1. Solving (4)
for L leads to

(n/m)_2(n,’m)-(d-k+log(h+1})—l <L. (5)

The relation given by Eq. (5) requires some inter-
pretation. In particular, letting C denote the left
side of Eq. (5), it indicates that as long as C<L,
then the linear quadtree requires less bits than the
pointer quadtree. In other words, for a given d
and A, if the number of leaf nodes (ie., L) is less
than or equal to C (ie., L=C), then the pointer
quadtree requires a smaller or equal number of
bits than the linear quadtree. Thus C is a cutoff
value for the number of leaf nodes. We must also
show that the cutoff value is unique. This is easy
to see because C can be written as a function of
d and h, which is monotonically increasing in both
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d and h as long as each of them is greater than
or equal to 2,

The cutoff value obtained in Eq. (5} is based on
a continuous model in the sense that the deriva-
tioin does not restrict the pointer, level, depth, and
node type fields to lie on bit boundaries as would
be required in an actual implementation. Letting
[x] represent the ceiling of x, we can rewrite Eq.
(4) to incorporate a restriction that these fields
comprise an integer number of bits by:

d-h+[log(h+ 1) <(m/n)-(1 +[log(L-m/m)]). (6}
Rearranging the sides of Eq. (6) yields
(n/m)-(d-h+[log(h+ 1)) —1<[log(L-m/n)].  (7)
By approximating log(L-m/n) by log(L-m/n)+1,
the inequality given by Eq. (7) can be rewritten
as

(n/m)-(d-h+[log(h+1)1)—1—1<log(L-m/n). (8)
Solving Eq. (8) for L results in

(n/m) . 2(1:/»1) Ad-h+Tlog(h+ 1)~ 2 <L (9)

Unfortunately, bit addressability is awkward on
most computer architectures. Therefore, typical im-
plementations lead to a further restriction so that
the encoding for a given node starts on a byte
boundary. In this analysis, we shall assume 8-bit
bytes. Let {x} denote the quantity 8-[x/8]. In the
following, we pack the pointers across byte bound-
aries while still requiring each pointer field to com-
prise an integer number of bits. Restricting each
node to start on a byte boundary results in Eq.
{4) being rewritten as

{d-h+Tlog(h+ 1)1}
<(/n)- {m-(1+[log(L-m/n)7)}. (10)

Multiplying both sides of Eq. (10) by n yields
n-{d-h+[log(h+ 1)1} <{m-(1 + [Tog(L-m/n)7)}.

Note that

{m-(1+[log(L-m/n)7)}
=8-[m-(1+[log(L-m/n)7)/8]

implies
{m-(1+og(L-m/m) 1)}
=8-(m-(1+[log(L-m/n)1)/8 + 1) (11)

Applying the following transformations to Eq. (11)
yields Eq. (12)
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(n-{d-h+[log(h+1)]}—8)ym
<1+[log{L-m/n)]
(n/m)-{d-h+[log(h+1)7}—(8/m)
<1+ [log(L-m/n)]
(n/m)- {d- h+Tog(h+1)1} — (8/m)— 1
<[log(L-m/n)]
(n/m)-{d-h+[log(h+ 1)1} —(8/m)—2
<log(L-m/n)
(nfm)- 2t {d-k+[logth+ ) —(8/m}—~2 (12)

At this point, it is interesting to compare the cutoff
values of Eq. (9) and Eq. (12). Let us assume that
the difference between {d-h+[log(h+1)7} and d-
h+[log(h+1)7] can be ignored, ie., for the sake
of this comparison, we waive the requirement that
each node of the linear quadtree start on a byte
boundary while still requiring each node of the
pointer quadtree to start on a byte boundary. Thus
no bits are wasted in the case of the linear quadtree,
while they are still wasted in the case of the pointer
quadtree. In this case, the cutoff value when a node
must start on a byte boundary is 278%™ times the
integer field cutoff value. Observe that in the two-
dimensional case, 278/ is 1/4, in the three-dimen-
sional case it is 1/2, and in the four-dimensional
case it is about 1/1.4.

In some applications it may be inconvenient to
unpack the bytes containing the four pointers prior
to accessing a particular son. In such a case, the
pointer quadtree is further restricted so that each
pointer starts on a byte boundary. Incorporating
this restriction, and using the same notation as be-
fore, Eq. (4) is rewritten as

{d-h+Tlog(h+1)7} <(m/n)-(1 + {log(L-m/n)}). (13)

Rearranging the sides of Eq. (13) and solving for
L yields

(n/m)-{d-h+Tlog(h+ 1)1} — 1 <{log(L-m/n)}
(n/fm)-{d-h+[log(h+ 1)1} —1—8<log(L-m/n)
(n/m)_2(n/m)-{d-h+rlog(k+1)'|—1 -8 <L (14)

The cutoff value of Eq. (14) can be interpreted
by examining the relationship between {d-h
+[log(h+1)7} and d-h+[log(h+1)7], and using
the cutoff value of Eq. (9) as a point of refer-
ence. The best case of the linear quadtree arises
when we ignore the difference between {d-
h+[log(h+1)]} and d-h+[log(h+1)7], ie., for the
sake of this comparison, we waive the requirement
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that each node of the linear quadtree start on a
byte boundary while still requiring each pointer
of the pointer quadtree to start on a byte boundary.
In this case the cutoff value when each pointer must
start on a byte boundary is 27 times the integer
field cutofl value. Thus the cutoff value beyond
which the linear quadtree would be more compact
than the pointer quadtree is significantly lower. On
the other hand, the worst case of the linear quad-
tree arises when the difference between {d-h
+[log(h+1)7} and d-h+[log(h+1)] is a maxi-
mum. For a byte size of 8, the maximum difference
between {x} and x is 7 when x is an integer. Now,
as n/m approaches 1, the integer field cutoff value
of Eq. (9) and the each pointer on a byte boundary
cutoff value of Eq. (14) would tend to be the same.
In other words, the cutoff values are the same when
the configuration of nodes is such that the linear
quadtree wastes 7/8ths of one byte for each loca-
tional code.

5 Empirical interpretation

In order to gain a better understanding of the inter-
relationships between the different cutoff values, we
have tabulated them in Table 1! for two-dimen-

! The cutofl values of relations (9), {12), and (14) are somewhat
lower than the actual values indicated by Eqs. (6), (10), and
(13), respectively, because of the approximation of log(L-m/n)
by log(L-m/n)+ 1, as well as roundoff errors in the computation
of natural logarithms and non-integer powers of two. However,
as the depth increases, these differences become insignificant
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sional images whose sizes range from 2°x 2% to
215 % 215, The table assumes 8-bit bytes. The maxi-
mum size of these images is much larger than what
is currently used in practical applications. For each
image size we have also indicated the maximum
number of leaf nodes in the corresponding quad-
free.

As a simple example, consider the quadtree in
Fig. 1. When all fields are restricted to lie on integer
bit boundaries, the table indicates that when the
quadiree has more than 12 leaf nodes the linear
quadtree is more efficient spacewise than the point-
er quadtree. However, in this example it turns out
that the pointer quadtree (150 bits) is more efficient
than the linear quadtree (152 bits). In fact, the true
cutoff value for depth 3 is really somewhere be-
tween 22 and 25 (there cannot be a quadtree with
23 or 24 leaf nodes since the number of leaf nodes
modulo 3 is always 1). The reason for the discrep-
ancy is easy to see by recalling the derivation of
Eq. (2), whose consequence is that all of our cutoff
values are really lower bounds, since they are based
on an overestimation of the total number of inter-
nal nodes in the quadtree. The effect of this over-
estimation on the true value of the cutoff becomes
insignificant as the depth of the quadtree is in-
creased because for small values of L, the pointer
quadtree is always superior to the linear quadtree
when the depth is sufficiently large.

From a practial standpoint, the most realistic of
the restrictions on the alignment of the fields and
pointer values is the one that forces a node to start
on a byte boundary while at the same time forcing

Table 1. Minimum leaf node counts for locational codes being better than pointers

Depth Continuous: Each field on Each node on Each pointer on Maximum number
relation (5) bit boundary: byte boundary: byte boundary: of nodes
relation (9) relation (12) relation (14)
3 19 12 3 0 64
4 68 34 192 6 256
5 227 161 192 6 1024
6 736 457 192 6 4096
7 2337 1292 12288 384 16384
8 7306 3653 12288 384 65536
9 22574 17378 12288 334 262144
10 69101 49152 12288 384 1048576
1 209928 139023 786432 24576 4194304
12 633807 393216 786432 24576 16777216
13 1903591 1112183 786432 24576 67108864
14 5691899 3145728 786432 24576 268435456
15 16954095 8897462 50331648 1572864 1073741824
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all fields to be of integer length (measured in bits).
It results in little wasted space because of the mul-
tiplicative effect of the 2¢ pointers per node. In par-
ticular, for a byte size of b, there is no wasted space
whenever 2¢ mod b =0, which is true whenever d =3
and b=38. In two dimensions we waste at most
4 bits when b=8,

In fact, we see that for some depth values, the stor-
age requirements of the pointer quadtree are never
worse than the linear quadtree. This effect is very
clear for images of greater than two dimensions
as shown in Table2 and discussed below. The
pointer quadtree is at its worst in comparison with
the linear quadtree when both nodes and their indi-
vidual constituent pointers must start on byte
boundaries.

Figure 5 is an example of a complicated image
which is a map from a geographic information sys-
tem that uses quadtrees (Samet et al. 1984). It is
a map of a floodplain region with 5266 leaf nodes
and is of depth 9. Notice that when nodes are re-
stricted to start on a byte boundary, the cutoff
value at depth 9 is 12,288. Under this restriction,
the pointer quadtree of Fig, 5 requires 12,285 8-bit
bytes while the linear quadtree requires 15,798 8-bit
bytes. Thus Fig. 5 is more compactly encoded by
the pointer quadtree.

Table 2 contains a more thorough tabulation of
the effect of restricting all nodes to start on byte
boundaries by varying the dimension of the image
as well as its depth. Again, we are using images
whose depth ranges from 3 to 15 with a byte size
of 8 bits. The images are either of two, three, or
four dimensions. For each dimension and depth,

Table 2. The iog of the maximum number of leaf nodes minus
log of cutoff

Depth 2D 3D 4D
3 442 —1.81 —0.41
4 0.42 1.19 —391
5 2.42 —2.81 0.09
6 442 0.19 —341
7 0.42 3.19 0.59
8 242 —0381 —291
9 442 2.19 1.59
10 6.42 —1.81 —241
11 2.42 1.19 1.59
12 442 4.19 —191
13 6.42 0.1 2.09
14 8.42 3.19 —141
15 442 —~0.81 2.09

Fig. 5. Example map of a floodplain

the table contains the value of the difference be-
tween the log of the maximum number of nodes
in a quadtree of this depth and dimension and the
log of the cutoff value for this restriction. In three
dimensions, for depths of 3, 5, §, 10, and 15, the
storage requirements of the pointer quadtree are
never worse than the linear quadtree. Similarly, in
four dimensions for trees of depth 3, 4, 6, 8, 10,
12, and 14, the same result holds. In fact, in the
three and four-dimensional cases the cutoff values
are so close to the maximum node counts, that
in all practical cases the pointer quadtree would
still occupy less space than the linear quadtree.

It is important to realize that at the cutoff value,
both the linear and pointer quadtrees are equally
compact. An interesting question is how quickly
does the advantage of the linear quadtree grow
as we move above and beyond the cuteff value.
Returning to the original continuous cutoff value
of Eq. (5), we note that in order for the linear quad-
tree to save k bits per leaf node, the following rela-
tion must hold:

L(d h+logh+1)+k-L
<(L/n)-(m-(1 +log(L-m/n)). (15)
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Rearranging Eq. (15) in a manner analogous (o
that used in the previous formulas and solving for
L yields

(n/m).2(nfm)-(d-h+log(k+ 1)y+k)—-1 <L (16)

From Eq. {16) we see that in order to save k bits
per node, the valuec of L must be increased by a
multiplicative factor of 2¢™* (recall that n/m is
1—279%. As an example, for a two-dimensional im-
age, in order for the linear quadtree to save more
than one bit per node over the pointer quadtree,
we need to increase the number of leaf nodes by
approximately 68% since 2¢™* is 1.68.

If we knew that all the leaf nodes were stored at
higher memory locations than the internal nodes,
then we would not need the flag bit of Eq. (2) to
distinguish between pointers to leaf and internal
nodes. For this case, the number of bits being saved
per leaf node (which we denoted by k) is m/n, ie,
the ratio of the total number of nodes to leaf nodes.
This savings in the pointer representation would
raise the cutoff value in the continuous case (as
well as all the other cases) by a factor of 2@/m)-tmn)
which is 2.

6 Concluding remarks

We have shown that the storage requirements of
the pointer quadtree are significantly reduced, and
for typical data the pointer quadtree often requires
less space than the linear quadtree, when we make
use of the following properties:
1. Pointers can be packed
2. Pointers need not be larger than is necessary
to distinguish between the nodes in the tree
3. NIL pointers need not be stored explicitly
4. Father links need not be stored
This is especially true for three-dimensional (e.g.,
octrees (Hunter 1978 ; Meagher 1982 a; Jackins and
Tanimoto 1980)} and higher dimensional data (Sa-
met and Tamminen 1985).
Of course, as nodes are inserted and deleted from
the quadtree, the storage requirements of the point-
er quadtree will change more abruptly than those
of the linear gunadtree. This is because each addi-
tional node in the linear quadtree requires a fixed
amount of extra storage (i.e., d-h+[log(h+ 1)7] bits
per node in a d dimensional image of height ),
whereas the space required for each node in the
pointer quadtree is a function of the number of
nodes in the tree, which can change dynamically.
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On the other hand, additional nodes may result
in an increase in the number of bits required for
a pointer, resulting in a need to reallocate memory.
Thus our comparison is really restricted to files
of static size. From an implementation point of
view, it makes more sense to interpret our compari-
son as addressing the issue of which representation
is most likely to permit the storage of the largest
quadtree of a given resolution in a fixed amount
of memory (e.g., the size of a disk or available
amount of core).

Gargantini (1982a) points out that for a binary
image represented as a linear quadtree we only
need to store the BLACK nodes; the WHITE
nodes can be inferred by use of a procedure that
simulates the guadtree construction process (sce
also two-dimensional run-encoding (Lauzon et al.
1985)). The potential space savings resulting from
the use of such a technique depend on the probabil-
ity of a leaf node being BLACK. Of course, the
same probabilistic information could also be used
to compress the pointer representation by reducing
the number of nodes through the use of techniques
such as the FBW sequence of approximations (Sa-
met 1985) which are based on forests (Jones and
Iyengar 1984). A comparison of the merit of the
application of such approaches to the linear and
pointer quadtree representations is beyond the
scope of this paper.

It should be borne in mind that in this paper we
have only focussed on traditional quadtree-like
data structures (i.e., a branching factor of 2¢ for
a d-dimensional image). The bintree (Knowlton
1980; Tamminen 1984; Samet and Tamminen
1988) is an alternative data structure that has a
branching factor of 2 at each node regardless of
the dimension of the image. A linear bintree (Tam-
minen 1984) can be defined in a manner analogous
to the linear quadtree. In this case, performing the
same comparison as made in this paper between
the linear bintree and the pointer bintree would
yield the opposite result. In particular, it is easy
to see that the linear bintree is almost always more
efficient spacewise than the pointer bintree. For
example, applying the analysis of the continuous
model, as illustrated by the derivation of Eq. (3)
in Sect. 4, to a bintree with I leaf nodes, we find
that the following relation must hold in order for
the lincar bintree to be more compact than the
pointer bintree:

LE(d-h+logh+1)<2-L-(1+1log(2-L)). 17
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Applying transformations to Eq. (17) similar to
those used earlier we find that the linear bintree
will require less bits than the pointer bintree as
long as

Y+ 1284,

Observing that 2%" is the maximum number of
leaves in a bintree of dimension d and depth d-h,
it should be apparent that this threshold is so low
that the number of leaf nodes in most images will
fall above it. An alternative justification for this
result is that in quadtree-like data structures, as
the dimension of the space increases, the majority
of the nodes are leaf nodes while the proportion
of internal nodes is considerably smaller. On the
other hand, for the bintree the number of internal
nodes is always one less than the number of leaf
nodes regardless of the dimension of the space.
Thus, the fact that for quadtrees the proportion
of internal nodes is lower means that the linear
quadtree requires proportionally more space than
the linear bintree when compared to their pointer
counterparts. It should be noted that although the
pointer quadtree is often more compact than the
linear quadtree, and the linear bintree is usnally
more compact than the pointer bintree, we do not
yet have a data model that will allow us to deter-
mine on the average which of the linear bintree
or the pointer quadtree is more compact.

Our discussion of the quadtree has been in the con-
text of region data. However, the comparison of
this paper is equally applicable to points, lines, face,
and other data for which the quadtree or octree
can be viewed as providing a spatial index. In these
cases, the quadtree is used to decompose the data
until some other criterion of simplicity is satisfied
{e.g., one point per quadrant (Orenstein 1982; Nel-
son and Samet 1987), one line segment per quad-
rant (Samet and Webber 1985), or one face per
octant (Ayala et al. 1985; Carlbom et al. 1985; Fu-
jimura and Kunii 1985)). A description of the use
of linear quadtrees for points, lines, and regions
can be found in Samet et al. 1984,
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