
Logical Physical Clocks
and Consistent Snapshots in Globally Distributed Databases

Sandeep Kulkarni*, Murat Demirbas**, Deepak Madeppa**, Bharadwaj Avva**, and Marcelo
Leone*

*Michigan State University
**University at Buffalo, SUNY

Abstract

There is a gap between the theory and practice of dis-
tributed systems in terms of the use of time. The theory of
distributed systems shunned the notion of time, and intro-
duced “causality tracking” as a clean abstraction to rea-
son about concurrency. The practical systems employed
physical time (NTP) information but in a best effort man-
ner due to the difficulty of achieving tight clock synchro-
nization. In an effort to bridge this gap and reconcile the
theory and practice of distributed systems on the topic of
time, we propose a hybrid logical clock, HLC, that com-
bines the best of logical clocks and physical clocks. HLC
captures the causality relationship like logical clocks, and
enables easy identification of consistent snapshots in dis-
tributed systems. Dually, HLC can be used in lieu of phys-
ical/NTP clocks since it maintains its logical clock to be
always close to the NTP clock. Moreover HLC fits in
to 64 bits NTP timestamp format, and is masking toler-
ant to NTP kinks and uncertainties. We show that HLC
has many benefits for wait-free transaction ordering and
performing snapshot reads in multiversion globally dis-
tributed databases.

1 Introduction

1.1 Brief history of time

Time is an illusion.

– Albert Einstein

Logical clock (LC). LC [12] was proposed in 1978 by
Lamport as a way of timestamping and ordering events
in a distributed system. LC is divorced from physical
time (e.g., NTP clocks): the nodes do not have access

to clocks, there is no bound on message delay and on
the speed/rate of processing of nodes. The causality rela-
tionship captured, called happened-before (hb), is defined
based on passing of information, rather than passing of
time.1 While being beneficial for the theory of distributed
systems, LC is impractical for today’s distributed systems:
1) Using LC, it is not possible to query events in relation
to physical time. 2) For capturing hb, LC assumes that all
communication occurs in the present system and there are
no backchannels. This is obsolete for today’s integrated,
loosely-coupled system of systems.

In 1988, the vector clock (VC) [7, 19] was proposed
to maintain a vectorized version of LC. VC maintains a
vector at each node which tracks the knowledge this node
has about the logical clocks of other nodes. While LC
finds one consistent snapshot (that with same LC values at
all nodes involved), VC finds all possible consistent snap-
shots, which is useful for debugging applications. In Fig-
ure 1, while LC would find (a,w) as a consistent cut, VC
would also identify (b,w), (c,w) as consistent cuts. Unfor-
tunately, the space requirement of VC is on the order of
nodes in the system, and is prohibitive.
Physical Time (PT). PT leverages on physical clocks at
nodes that are synchronized using the Network Time Pro-
tocol (NTP) [20]. Since perfect clock synchronization is
infeasible for a distributed system, there are uncertainty
intervals associated with PT. While PT avoids the disad-
vantages of LC by using physical time for timestamping,
it introduces new disadvantages: 1) When the uncertainty
intervals are overlapping, PT cannot order events. NTP
can usually maintain time to within tens of milliseconds
over the public Internet, and can achieve one millisec-
ond accuracy in local area networks under ideal condi-

1Event e happened-before event f, if e and f are on the same node
and e comes earlier than f, or e is a send event and f is the corresponding
receive event, or is defined transitively based on the previous two.

Figure 1: LC and VC timestamping

tions, however, asymmetric routes and network conges-
tion can occasionally cause errors of 100 ms or more. 2)
PT has several kinks such as leap seconds [13, 14] and
non-monotonic updates to POSIX time [8] which may
cause the timestamps to go backwards.
TrueTime (TT). TrueTime is proposed recently by
Google for developing Spanner [2], a multiversion dis-
tributed database. TT relies on a well engineered tight
clock synchronization available at all nodes thanks to GPS
clocks and atomic clocks made available at each cluster.
While TT avoids some of the disadvantages of LC/VC/PT,
it introduces new disadvantages: 1) TT requires special
hardware and a custom-build tight clock synchronization
protocol, which is infeasible for many systems (e.g., us-
ing leased nodes from public cloud providers). 2) If TT
is used for ordering events that respect causality then it is
essential that if e hb f then tt.e < tt.f . Since TT is purely
based on clock synchronization of physical clocks, to sat-
isfy this constraint, Spanner delays event f when neces-
sary. Such delays and reduced concurrency are prohibitive
especially under looser clock synchronization.

Figure 2: Not waiting out the uncertainty regions in TT
may result in inconsistent snapshots

HybridTime (HT). HT, which combines VC and PT
clocks, was proposed for solving the stabilizing causal de-
terministic merge problem [10]. HT maintains a VC at
each node which includes knowledge this node has about
the PT clocks of other nodes. HT exploits the clock syn-
chronization assumption of PT clocks to trim entries from
VC and reduces the overhead of causality tracking. In
practice the size of HT at a node would only depend on
the number of nodes that communicated with that node
within the last ε time, where ε denotes the clock synchro-
nization uncertainty. Recently, Demirbas and Kulkarni [3]
explored how HT can be adopted to solve the consistent
snapshot problem in Spanner [2].

1.2 Contributions of this work

In this paper we aim to bridge the gap between the theory
(LC) and practice (PT) of timekeeping and timestamping
in distributed systems and to provide guarantees that gen-
eralize and improve that of TT.

• We present a logical clock version of HT, which we
name as Hybrid Logical Clocks (HLC). HLC refines
both the physical clock (similar to PT and TT) and
the logical clock (similar to LC). HLC maintains its
logical clock to be always close to the NTP clock,
and hence, HLC can be used in lieu of physical/NTP
clock in several applications such as snapshot reads
in distributed key value stores and databases. Most
importantly, HLC preserves the property of logical
clocks (e hb f ⇒ hlc.e < hlc.f) and as such HLC
can identify and return consistent global snapshots
without needing to wait out clock synchronization
uncertainties and without needing prior coordination,
in a posteriori fashion.

• HLC is backwards compatible with NTP, and fits in
the 64 bits NTP timestamp format. Moreover, HLC
works as a superposition on the NTP protocol (i.e.,
HLC only reads the physical clocks and does not up-
date them) so HLC can run alongside applications
using NTP without any interference. Furthermore
HLC is general and does not require a server-client
architecture. HLC works for a peer-to-peer node
setup across WAN deployment, and allows nodes
to use different NTP servers.2 In Section 3, we
present the HLC algorithm and prove a tight bound
on the space requirements of HLC and show that the
bound suffices for HLC to capture the LC property
for causal reasoning.

2In fact HLC can work with ad hoc clock synchronization proto-
cols [17] and is not bound to NTP.

2

• HLC provides masking tolerance to common NTP
problems (including nonmonotonous time updates)
and can make progress and capture causality in-
formation even when time synchronization has de-
graded. HLC is also self-stabilizing fault-tolerant
and is resilient to arbitrary corruptions of the clock
variables, as we discuss in Section 4.

• We implement HLC and provide experiment results
of HLC deployments under various deployment sce-
narios. In Section 5, we show that even under stress-
testing, HLC is bounded and the size of the clocks re-
main small. These practical bounds are much smaller
than the theoretical bounds proved in our analysis.
Our HLC implementation is made available in an
anonymized manner at https://github.com/
AugmentedTimeProject

• HLC has direct applications in identifying consistent
snapshots in distributed databases [2, 11, 15, 16, 22,
24]. It is also useful in many distributed systems
protocols including causal message logging in dis-
tributed systems [1], Byzantine fault-tolerance pro-
tocols [9], distributed debugging [21], distributed
filesystems [18], and distributed transactions [25]. In
Section 6, we showcase the benefits of HLC for snap-
shot reads in distributed databases.

2 Preliminaries

A distributed system consists of a set of nodes whose
number may change over time. Each node can perform
three types of actions, a send action, a receive action, and
a local action. The goal of a timestamping algorithm is
to assign a timestamp to each event. We denote a times-
tamping algorithm with an all capital letters name, and the
timestamp assigned by this algorithm by the correspond-
ing lower case name. E.g., we use LC to denote the logical
clock algorithm by Lamport [12], and use lc.e to denote
the timestamp assigned to event e by this algorithm.

The notion of happened before hb captures the causal
relation between events in the system. As defined in [12],
event e happened before event f (denoted by e hb f) is
a transitive relation that respects the following: e and f
are events on the same node and e occurred before f , or e
is a send event and f is the corresponding receive event.
We say that e and f are concurrent, denoted by e||f , iff
¬(e hb f) ∧ ¬(f hb e).

Based on the existing results in the literature, the fol-
lowing are true:

e hb f ⇒ lc.e < lc.f

lc.e = lc.f ⇒ e||f
e hb f ⇔ vc.e < vc.f

However, the following claims are not true:
e hb f ⇐ lc.e < lc.f
lc.e = lc.f ⇐ e||f
e hb f ⇒ pt.e < pt.f

3 HLC: Hybrid Logical Clocks

In this section, we introduce our HLC algorithm starting
with a naive solution first. We then prove correctness and
tight bounds on HLC. We also elaborate on the useful fea-
tures of the HLC for distributed systems.

3.1 Problem statement

The goal of HLC is to provide one-way causality detec-
tion similar to that provided by LC, while maintaining the
clock value to be always close to the physical/NTP clock.
The formal problem statement for HLC is as follows.

Given a distributed system, assign each event e a times-
tamp, l.e, such that

1. e hb f ⇒ l.e < l.f ,

2. Space requirement for l.e is O(1) integers,

3. l.e is represented with bounded space,

4. l.e is close to pt.e, i.e., |l.e− pt.e| is bounded.

The first requirement captures one-way causality infor-
mation provided by HLC. The second requirement cap-
tures that the space required for l.e is O(1) integers. To
prevent encoding of several integers into one large inte-
ger, we require that any update of l.e is achieved by O(1)
operations. The third requirement captures that the space
required to represent l.e is bounded, i.e., it does not grow
in an unbounded fashion. In practice, we like l.e to be the
size of pt.e, which is 64 bits in the NTP protocol.

Finally, the last requirement states that l.e should be
close to pt.e. This enables us to utilize HLC in place of
PT. To illustrate this consider the case where the designer
wants to take a snapshot at (physical) time t. Given that
physical clocks are not perfectly synchronized, it is not
possible to get a consistent snapshot by just reading state
at different nodes at time t as shown in Figure 2. On the
other hand, using HLC we can obtain such a snapshot by
taking the snapshot of every node at logical time t. Such a
snapshot is guaranteed to be consistent, because from the
HLC requirement 1 we have l.e = l.f ⇒ e||f . In Sec-
tion 6, we discuss in more detail how HLC enables users

3

Initially lc.j := 0

Send or local event
l.j := max(l.j + 1, pt.j)
Timestamp with l.j

Receive event of message m
l.j := max(l.j + 1, l.m+ 1, pt.j)
Timestamp with l.j

Figure 3: Naive HLC algorithm for node j

to take uncoordinated a-posteriori consistent snapshots of
the distributed system state.

3.2 Description of the Naive Algorithm

Given the goal that l.e should be close to pt.e, in the
naive algorithm we begin with the rule: for any event e,
l.e ≥ pt.e. We design our algorithm as shown in Figure 3.
This algorithm works similar to LC. Initially all l values
are set to 0. When a send event, say f , is created on node
j, we set l.f to be max(l.e+1, pt.j), where e is the pre-
vious event on node j. This ensures l.e < l.f . It also en-
sures that l.f ≥ pt.f . Likewise, when a receive event f is
created on node j, l.f is set tomax(l.e+1, l.m+1, pt.j),
where l.e is the timestamp of the previous event on j, and
l.m is the timestamp of the message (and, hence, the send
event). This ensures that l.e < l.f and l.m < l.f .

It is easy to see that the algorithm in Figure 3 satisfies
the first two requirements in the problem statement. How-
ever, this naive algorithm violates the fourth requirement,
which also leads to a violation of the third requirement
for bounded space representation. To show the violation
of the fourth requirement, we point to the counterexam-
ple in Figure 4 which shows how |l.e− pt.e| grows in an
unbounded fashion. The messaging loop among nodes 1,
2, and 3 can be repeated forever, and at each turn of the
loop the drift between logical clock and physical clock
(the l − pt difference) will keep growing.

The root of the unbounded drift problem is due to the
naive algorithm using l to maintain both the maximum of
pt values seen so far and the logical clock increments from
new events (local, send, receive). This makes the clocks
lose information: it becomes unclear if the new l value
came from pt (as in the message from node 0 to node 1)
or from causality (as is the case for the rest of messages).
As such, there is no suitable place to reset l value to bound
the l−pt difference, because resetting l may lead to losing
the hb relation, and, hence, a violation of requirement 1.

Figure 4: Counter example

Note that the counterexample holds even with the re-
quirement that the physical clock of a node is incremented
by at least one between any two events on that node.
Figure 4 satisfies this constraint between pt and l, yet
still |l − pt| keeps growing unboundedly. However, there
are conditions under which the counterexample does not
work, and the naive algorithm suffices for solving the
HLC problem. If we assume that the time for send event
and receive event is long enough so that the physical clock
of every node is incremented by at least one, then the
counterexample on Figure 4 fails, and the naive algorithm
would be able to maintain |l − pt| bounded.

Instead of depending on assumptions on physical clock
rate and event generation rate across all nodes in the sys-
tem for proving the correctness and boundedness of HLC,
we show how to properly implement HLC next.

3.3 HLC Algorithm

All problems in computer science can be solved
by another level of indirection. –David Wheeler

We use our observations from the counterexample to
develop the correct HLC algorithm. In this algorithm, the
l.j in the naive algorithm is expanded to two parts: l.j and
c.j. The first part l.j is introduced as a level of indirection
to maintain the maximum of pt information learned so far,
and c is used for capturing causality updates only when l
values are equal.

In contrast to the naive algorithm where there was no
suitable place to reset l without violating hb , in the
HLC algorithm, we can reset c when the information

4

Initially l.j := 0; c.j := 0

Send or local event
l′.j := l.j;
l.j := max(l′.j, pt.j);
If (l.j= l′.j) then c.j := c.j + 1

Else c.j := 0;
Timestamp with l.j, c.j

Receive event of message m
l′.j := l.j;
l.j := max(l′.j, l.m, pt.j);
If (l.j= l′.j= l.m) then c.j := max(c.j, c.m)+1

Elseif (l.j= l′.j) then c.j := c.j + 1
Elseif (l.j= l.m) then c.j := c.m+ 1
Else c.j := 0

Timestamp with l.j, c.j

Figure 5: HLC algorithm for node j

heard about maximum pt catches up or goes ahead of l.
Since l denotes the maximum pt heard among nodes and
is not continually incremented with each event, within a
bounded time, either one of the following is guaranteed to
occur: 1) a node receives a message with a larger l, and its
l is updated and c is reset to reflect this, or 2) if the node
does not hear from other nodes, then its l stays the same,
and its pt will catch up and update its l, and reset the c.

The HLC algorithm is as shown in Figure 5. Initially,
l and c values are set to 0. When a new send event f is
created, l.j is set to max(l.e, pt.j), where e is the pre-
vious event on j. Similar to the naive algorithm, this
ensures that l.j ≥ pt.j. However, because we have re-
moved the “+1”, it is possible that l.e equals l.f . To deal
with this, we utilize the value of c.j. By incrementing c.j,
we ensure that 〈l.e, c.e〉 < 〈l.f, c.f〉 is true with lexico-
graphic comparison.3 If l.e differs from l.f then c.j is
reset, and this allows us to guarantee that c values remain
bounded. When a new receive event is created, l.j is set
to max(l.e, l.m, pt.j). Now, depending on whether l.j
equals l.e, l.m, both or neither, c.j is set.

Let’s reconsider the counterexample to the naive algo-
rithm. This example replayed with the HLC algorithm is
shown in Figure 6. When we continue the loop among
nodes 1, 2, 3, we see that pt at nodes 1, 2 and 3 catches
up and exceeds l= 10 and resets c to 0. This keeps the c
variable bounded at each node.

To prove the correctness of the HLC algorithm, first
we show that it satisfies requirement 1 and can be used

3(a, b) < (c, d) iff ((a < c) ∨ ((a = c) ∧ (b < d)))

Figure 6: The trace in Figure 4 re-timestamped with HLC

for LC. This follows easily from how l and c values are
updated in the algorithm.

Theorem 1. For any two events e and f , e hb f ⇒
(l.e, c.e) < (l.f, c.f)

Next, we show that HLC satisfies requirement 4, which
asserts that the HLC value is close to PT. Based on how l
is updated in the algorithm, it is easy to see Theorem 2.

Theorem 2. For any event f , l.f ≥ pt.f

Theorem 3. l.f denotes the maximum clock value that f
is aware of. In other words,
l.f > pt.f ⇒ (∃g : g hb f ∧ pt.g = l.f)

Proof. We prove this by induction, as new events are cre-
ated. In the initial state, the statement is trivially satisfied.

Consider the case where a new event f is created.

• If f is a send event and e is the previous event, then
by induction, we have

l.e > pt.e⇒ (∃g : g hb e ∧ pt.g = l.e)

Furthermore, from the HLC algorithm, if l.f > pt.f
then l.f = l.e. Also, e hb f is true. Hence, we have

l.f > pt.f ⇒ (∃g : g hb f ∧ pt.g = l.f).

• If f is a receive event. Let e be the previous event on
the same node and m the received message.

Once again, if l.f > pt.f is true then l.f equals l.e
or l.m. The analysis of each of these cases is similar
to the previous case. Hence, we have

l.f > pt.f ⇒ (∃g : g hb f ∧ pt.g = l.f).

5

Using Theorem 3, we can show that |l−pt| is bounded.

Corollary 1. For any event f , |l.f − pt.f | ≤ ε

Proof. We cannot have two events e and f such that
e hb f and pt.e > pt.f + ε due to clock synchroniza-
tion constraints. Hence, from Theorem 3, this theorem
follows.

Finally, we prove requirement 3, by showing that c
value of HLC is bounded as well. To this end, we ex-
tend Theorem 3 to identify the relation of c and events
created at a particular time. As we show in Theorem 4,
c.f captures information regarding events created at time
l.f .

Theorem 4. For any event f ,
c.f = k ∧ k > 0
⇒ (∃g1, g2, · · · , gk :

(∀j : 1 ≤ j < k : gi hb gi+1)
∧ (∀j : 1 ≤ j ≤ k : l.(gi) = l.f)
∧ gk hb f)

Proof. We prove this by induction. This is trivially sat-
isfied in the initial state. Also, if c.f is set to 0 then this
statement is trivially satisfied.

In creation of send event, c.f is set to c.e+ 1 only if l.e
equals l.f . By induction, there exists a sequence of length
c.e that satisfies the statement of the theorem. Moreover,
e hb f and ¬(e hb e). Hence, there exists a sequence of
c.e+ 1 (=c.f) that satisfies the statement of the theorem.

A similar analysis also applies for the receive event
when c.f is set to c.e+ 1 or c.m+ 1.

From Theorem 4, the following two corollaries follow.

Corollary 2. For any event f ,
c.f ≤ |{g : g hb f ∧ l.g = l.f)}|.

Corollary 3. For any event f , c.f ≤ N ∗ (ε+ 1)

Proof. From Corollary 2, for any event f , c.f ≤ |{g :
g hb f ∧ l.g = l.f)}|. Also, from Theorem 2, l.g ≥ pt.g.
Also, by clock synchronization assumption of g hb f then
pt.g ≤ pt.f + ε. Hence, the only events that can fall into
the set {g : g hb f ∧ l.g = l.f)} are those that were
created when physical time of the node that created them
was between [l.f, l.f + ε]. By our constraint that physical
clock of a node is incremented by at least one between
any two events on that node, there are at most ε + 1 such
events on any one node. Hence, the corollary follows.

While the above bound is almost tight, adding a small
reasonable assumption can substantially reduce the bound
on c, and thereby reducing the space that needs to be allo-
cated for that.

Assumption to reduce the bound on c further: We
assume that the time for message transmission is long
enough so that the physical clock of every node is incre-
mented by at least d, where d is a given parameter.

Now, consider the situation where c.f = k, k > 0, at
node j. From the above assumption, from Theorem 4, we
have a sequence of k events g1, g2, · · · , gk that satisfy the
conditions in Theorem 4. In other words, l.(g1) = l.f .
Let l denote the node where g1 was created. Hence, when
g1 was created, pt.l was at least equal to l.f . By assump-
tion about clock synchronization, when f is created pt.l
is at least l.f + (k − 1) ∗ d. Given clock synchronization
constraints, this must be less than pt.f + ε. Simplifying
this, k is less than ε/d+ 1 + (pt.f − l.f). From Theorem
2, we have

Corollary 4. Under the assumption made above, c.f is at
most ε/d+ 1.

Recall that for d ≥ 1, the counterexample in Figure 4
does not hold, and the naive algorithm would become
boundable and also satisfy the HLC requirements. The
difference between the HLC algorithm and the naive al-
gorithm is that the HLC algorithm did not need this as-
sumption to show that it is bounded, but only to reduce
the size of the bound.

3.4 Properties of HLC

HLC algorithm is designed for arbitrary distributed ar-
chitecture and is also readily applicable to other environ-
ments such as the client-server model.

We intentionally chose to implement HLC as a super-
position on NTP. In other words, HLC only reads the
physical clock but does not update it. Hence, if a node re-
ceives a message whose timestamp is higher, we maintain
this information via l and c instead of changing the phys-
ical clock. This is crucial in ensuring that other programs
that use NTP alone are not affected. This also avoids the
potential problem where clocks of nodes are synchronized
with each other even though they drift substantially from
real wall-clock. Furthermore, there are impossibility re-
sults showing that accepting even tiny unsynchronization
to adjust the clocks can lead to diverging clocks [6]. Fi-
nally, while HLC utilizes NTP for synchronization, it does
not depend on it. In particular, even when physical clocks
utilize any ad hoc clock synchronization algorithm [17],

6

HLC can be superposed on top of such a service, so can
also be used in ad hoc networks.

4 Resilience of HLC

4.1 Self-stabilization

Here we discuss how we design self-stabilizing [4] fault-
tolerance to HLC, which enables HLC to be eventually
restored to a legitimate state, even when HLC is per-
turbed/corrupted to an arbitrary state.

Stabilization of HLC rests on the superposition prop-
erty of HLC on NTP clocks. Since HLC does not modify
the NTP clock, it does not interfere with the NTP correct-
ing/synchronizing the physical clock of the node. Once
the physical/NTP clock stabilizes, HLC can be corrected
based on observations in Theorem 2 and Corollaries 3 and
2. These results identify the maximum permitted value of
l−pt and the maximum value of c. In the event of extreme
clock errors by NTP or transient memory corruption, the
application may reach a state where these bounds are vi-
olated. In that case, we take the physical clock as the
authority, and reset l and c values to pt and 0 respectively.
In other words the stabilization of HLC follows that of
stabilization of pt via NTP clock.

In order to contain the spread of corruptions due to bad
HLC values, we have a rule to ignore out of bounds mes-
sages. We simply ignore reception of messages that cause
l value to diverge too much from pt. This prevention ac-
tion fires if the sender of the message is providing a clock
value that is significantly higher suggesting the possibility
of corrupted clock. In order to contain corruptions to c, we
make its space bounded, so that even when it is corrupted,
its corruption space is limited. This way c would in the
worst case roll over, or more likely, c would be reset to
an appropriate value as a result of l being assigned a new
value from pt or from another l received in a message.

Note that both the reset correction action and the ignore
out-of-bounds message action are local correction actions
at a node. If HLC fires either of these actions, it also logs
the offending entries for inspection and raises an excep-
tion to notify the administrator.

4.2 Masking of synchronization errors

In order to make HLC resilient to common NTP syn-
chronization errors, we assign sufficiently large space to
l−pt drift so that most (99.9%) NTP kinks can be masked
smoothly. While Theorem 2 and Corollaries 3 and 2 state

that l − pt stay within ε the clock synchronization uncer-
tainty (crudely two times the NTP offset value), we set
a very conservative value, ∆, on the l − pt bound. The
bound ∆ can be set to a constant factor of ε, and even on
the order of seconds depending on the application seman-
tics. This way we tolerate and mask common NTP clock
synchronization errors within normal operation of HLC.
And when ∆ bound is violated, the local reset correction
action and the ignore message prevention action fire as
discussed in the previous subsection.

Using this approach, HLC is robust to stragglers, nodes
with pt stuck slightly in the past. Consider a node that lost
connection to its NTP server and its clock started drifting
behind the NTP time. Such a straggler can still keep up
with the system for some time and maintain up-to-date
and bounded HLC time: As long as it receives messages
from other nodes, it will learn new/higher l values and
adopt them. This node will increment its c by 1 when it
does not adopt a new l value, but this does not cause the c
rise excessively for the other nodes in the system. Even if
this node sends a message with high c number, the other
nodes will have up-to-date time and ignore that c and will
use c = 0. Similarly, HLC is also robust to the rushers,
nodes with pt slightly ahead of others. The masking tol-
erance of HLC makes it especially useful for last write
wins (LWW) database systems like Cassandra [8,14]. We
investigate this tolerance empirically in the next section.

5 Experiments

5.1 AWS deployment results

The experiments used Amazon AWS xlarge instances run-
ning Ubuntu 14.04. The machines were synchronized to a
stratum 2 NTP server, 0.ubuntu.pool.ntp.org. In
our basic setup, we programmed all the instances to send
messages to each other continuously using TCP sock-
ets, and in a separate thread receive messages addressed
to them. The total messages sent range from 75,000 to
425,000.

Using the basic setup (all nodes are senders and send-
ing to each other) within the same AWS region, we get the
following results. The value “c” indicates that the value of
the c component of the HLC at the nodes. The remaining
columns show the frequency: the percentage of times the
HLC at the nodes had the corresponding c values out of
the total number of events. For each setup, we collected
data with two different NTP synchronization levels, indi-
cated by the average offset of nodes’ clocks from NTP.
When we allow the NTP daemons at the nodes more time

7

(a couple hours) to synchronize, we get lower NTP off-
set values. We used “ntpdc -c loopinfo” and “ntpdc -c
kerninfo” calls to obtain the NTP offset information at the
nodes.

Using 4 m1.xlarge nodes
c offset=5ms offset=1.5ms
0 83.90 % 83.66 %
1 12.12 % 12.03 %
2 3.37 % 4.09 %
3 0.24 % 0.21 %

The experiments with 4 nodes show that the value of c
remains very low, less than 4. This is a much lower bound
than the worst case possible theoretical bound we proved
in Section 3. We also see that the improved NTP syn-
chronization helps move the c distribution toward lower
values, but this effect becomes more visible in the 8 and
16 node experiments. With the looser NTP synchroniza-
tion, with average offset 5 ms, the maximum l − pt dif-
ference was observed to be 21.7 ms. The 90th percentile
of l − pt values correspond to 7.8 ms, with their average
value computed to be 0.2 ms. With the tighter NTP syn-
chronization, with average offset 1.5 ms, the maximum
l − pt difference was observed to be 20.3 ms. The 90th
percentile of l−pt values correspond to 8.1 ms, with their
average value computed to be 0.2 ms.

Using 8 m1.xlarge nodes
c offset=9ms offset=3ms
0 65.56 % 91.18 %
1 15.39 % 8.82 %
2 8.14 % 0 %
3 5.90 %
4 2.74 %
5 1.39 %
6 0.56 %
7 0.20 %
8 0.08 %
9 0.03 %

The experiments with 8 nodes highlights the lowered
c values due to improved NTP synchronization. For the
experiments with average NTP offset 9ms, the maximum
l − pt difference was observed to be 107.9 ms. The 90th
percentile of l − pt values correspond to 41.4 ms, with
their average value computed to be 4.2 ms. For the exper-
iments with average NTP offset 3ms, the maximum l− pt
difference was observed to be 7.4 ms. The 90th percentile
of l − pt values correspond to 0.1 ms, with their average
value computed to be 0 ms.

Using 16 m1.xlarge nodes
c offset=16ms offset=6ms
0 66.96 % 75.43 %
1 19.40 % 18.51 %
2 7.50 % 3.83 %
3 4.59 % 1.84 %
4 1.76 % 0.32 %
5 0.61 % 0.06 %
6 0.14 % 0.01 %
7 0.02 %

The 16 node experiments also showed very low c values
despite all nodes sending to each other at practically at the
wire speed. For the experiments with average NTP offset
16ms, the maximum l − pt difference was observed to be
90.5 ms. The 90th percentile of l − pt values correspond
to 25.2 ms, with their average value computed to be 2.3
ms. For the experiments with average NTP offset 6ms,
the maximum l − pt difference was observed to be 46.8
ms. The 90th percentile of l− pt values correspond to 8.4
ms, with their average value computed to be 0.3 ms.

WAN deployment results. We deployed our HLC
testing experiments on a WAN environment as well.
Specifically, we used 4 m1.xlarge instances each one lo-
cated at a different AWS region: Ireland, US East, US
West and Tokyo. Our results show that with 3ms NTP
offset, the c = 0 values constitute about 95% of the cases
and c = 1 constitute the remaining 5%. These values are
much lower than the corresponding values for the single
datacenter deployment. The maximum l − pt difference
remained extremely low, about 0.02 ms, and the 90th per-
centile of l − pt values corresponded to 0. These values
are again much lower than the corresponding values for
the single datacenter deployment.

The reason for seeing very low l−pt and c values in the
WAN deployment is because the message communication
delays across WAN are much larger than the ε, the clock
synchronization uncertainty. As a result, when a message
is received, its l timestamp is already in the past and is
smaller than the l value at the receiver which is updated
by its pt. Since the single cluster deployment with short
message delays is the most demanding scenario in terms
of HLC testing we focused on those results in our presen-
tation.

5.2 Stress testing and resilience evaluation
in simulation

To further analyze the resiliency of HLC, we evaluated
it in scenarios where it will be stressed, e.g., where the
event rate is too high and where the clock synchronization

8

is significantly degraded. In our simulations, we consid-
ered the case where the event creation rate was 1 event per
millisecond and clock drift varies from 10ms to 100ms.
Given the relation between l and pt from Theorem 2, the
drift between l and pt is limited to the clock drift. Hence,
we focus on values of c for different events.

In these simulations, a node is allowed to advance its
physical clock by 1ms as long as its clock drift does not
exceed beyond ε. If a node is allowed to advance its physi-
cal clock then it increases it with a 50% probability. When
it advances its clock, it can send a message with certain
probability (All simulations in this section correspond to
the case where this probability is 100%). We deliver this
message at the earliest possible feasible time, essentially
making delivery time to be 0. The results are as shown in
Figure 7. As shown in these figures, the distribution of c
values was fairly independent of the value of ε. Moreover,
for more than 99% of events, the c value was 4 or less.
Less than 1% of events had c values of 5-8.

Figure 7: Distribution of c values for varying ε

To evaluate HLC in the presence of degraded clock syn-
chronization, we added a straggler node to the system.
This node was permitted to violate clock drift constraints
by always staying behind. We consider the case where the
straggler just resides at the end of permissible boundary,
i.e., its clock drift from the highest clock is ε. We also
consider the case where straggler violates the clock drift
constraints entirely and it is upto 5ε behind the maximum
clock. The results are as shown in Figures 8 and 9. Even
with the straggler, the c value for 99% events was 4 or
less. However, in these simulations, significantly higher c
values were observed for some events. In particular, for
the case where the straggler remained just at the end of
permissible boundary, events with c value of upto 97 were
observed at the straggler node. For the case where the

Figure 8: Distribution of c values with a straggler

straggler was permitted to drift by 5ε, c value of upto 514
was observed again only at the straggler node. The strag-
gler node did not raise the c vluaes of other nodes in the
system.

Figure 9: Distribution of c values with a straggler out of
sync by 5 ε

We also conducted the experiments where we had a
rusher, a node that was excessively ahead. Figures 10
and 11 demonstrate the results. The maximum c value
observed in these experiments was 8. And, the number of
events with c value greater than 3 is less than 1%.

As a result of these experiments we conclude that the
straggler node affects the c value more than the rusher
node, but only for itself. In our experiments, each node
selects the sender randomly with uniform distribution.
Hence, messages sent by the rusher node do not have a

9

significant cumulative effect. However, messages sent by
all nodes to the straggler node causes its c value to grow.

Figure 10: Distribution of c values with a rusher

Figure 11: Distribution of c values with a rusher ahead by
5ε

6 Discussion

In this section, we discuss application of HLC for find-
ing consistent snapshots in distributed databases, compact
representations of l and c, and other related work.

6.1 Snapshots

In snapshot read, the client is interested in obtaining a
snapshot of the data at a given time. HLC can be used to

perform snapshot read similar to that performed by True-
Time. Moreover, unlike TT , there is no need to delay any
transaction due to uncertainty in the clock values.

To describe our approach more simply, we introduce
the concept of virtual dummy events. Let e and f be two
events on the same node such that l.e < l.f . In this case,
we introduce dummy (internal) events whose l value is in
the range [l.e + 1, l.f] and c.f = 0. (If c.f = 0 then the
last event in the sequence is not necessary.) Observe that
introducing such dummy events does not change times-
tamps of any other events in the system. However, this
change ensures that for any time t, there exists an event
on every node where l value equals t and c value equals 0.

Figure 12: Consistent snapshot for t=10 in HLC trace

With the virtual dummy events adjustment, given a re-
quest for snapshot read at time t, we can obtain the values
at timestamp 〈l = t, c = 0〉.4 Our adjustment ensures
that such events are guaranteed to exist. And, by the logi-
cal clock hb relationship mentioned in requirement 2, we
have hlc.e = hlc.f ⇒ e||f and so we can conclude that
the snapshots taken at this time are consistent with each
other and form a consistent global snapshot. Moreover,
based on Theorem 3 and Corollary 2, this snapshot corre-
sponds to the case where the global time is in the window
[t− ε, t].

In Figure 12, we show an example of finding consistent
snapshot given a request for snapshot read at time t = 10.
As per our algorithm, we read the state at each node at
timestamp 〈l = 10, c = 0〉, and this corresponds to the
snapshot illustrated in Figure 12.

4Actually we can obtain snapshot reads for any 〈l = t, c = K〉 and
not just at 〈l= t, c=0〉

10

6.2 Compact Timestamping using l and c

NTP uses 64-bit timestamps which consist of a 32-bit part
for seconds and a 32-bit part for fractional second. (This
gives a time scale that rolls over every 232 seconds—136
years— and a theoretical resolution of 2−32 seconds—
233 picoseconds.) Using a single 64-bit timestamp to
represent HLC is also very desirable for backwards com-
patibility with NTP clocks. Being backwards compat-
ible with NTP clocks is important because many dis-
tributed database systems and distributed key-value stores
use NTP clocks to timestamp and compare records.

There are, however, several challenges for represent-
ing HLC as a single 64-bit timestamp. Firstly, the HLC
algorithm maintains l and c separately, to differenti-
ate between increases due to the physical clock versus
send/receive/local events. Secondly, by tracking the pt,
the size of l is by default 64-bits as the NTP timestamps.

We propose the following scheme for combining l and
c and storing it in single 64 bit timestamp. This scheme
involves restricting l to track only the most significant 48
bits of pt in the HLC algorithm presented in Figure 5.
Rounding up pt values to 48 bits l values still gives us
microsecond granularity tracking of pt. Given NTP syn-
chronization levels, this is sufficient granularity to repre-
sent NTP time. The way we round up pt is to always take
the ceiling to the 48th bit. In the HLC algorithm in Fig-
ure 5, l is updated similarly but is done for 48 bits. When
the l values remain unchanged in an event, we capture
that by incrementing c following the HLC algorithm in
Figure 5. 16 bits remain for c and allows it room to grow
up to 65536, which is more than enough as we show in
our experiments in Section 5.

Using this compact representation, if we need to times-
tamp (message or data item for database storage), we will
concatenate c to l to create the HLC timestamp. The dis-
tributed consistent snapshot finding algorithm described
above is unaffected by this change to the compact repre-
sentation. The only adjustment to be made is to round up
the query time t to 48 bits as well.

6.3 Other related work

Dynamo [23] adopts VC as version vectors for causality
tracking of updates to the replicas. Cassandra uses PT and
LWW-rule for updating replicas.

Spanner [2] employs TT to order distributed transac-
tions at global scale, and facilitate read snapshots across
the distributed database. In order to ensure e hb f ⇒
tt.e < tt.f and provide consistent snapshots, Spanner re-

quires waiting-out uncertainty intervals of TT at the trans-
action commit time which restricts throughput on writes.
However, these “commit-waits” also enable Spanner to
provide a stronger property, external consistency (a.k.a,
strict serializability): if a transaction t1 commits (in ab-
solute time) before another transaction t2 starts, then t1’s
assigned commit timestamp is smaller than t2’s.

HLC does not require waiting out the clock uncertainty,
since it is able to record causality relations within this un-
certainty interval using the HLC update rules. HLC can
also be adopted for providing external consistency and
still keeping the throughput on writes unrestricted by in-
troducing client-notification-wait after a transaction ends.

An alternate approach for ordering events is to establish
explicit relation between events. This approach is exem-
plified in the Kronos system [5], where each event of in-
terest is registered with the Kronos service, and the appli-
cation explicitly identifies events that are of interest from
causality perspective. This allows one to capture causal-
ity that is application-dependent at the increased cost of
searching the event dependency relation graph. By con-
trast, LC/VC/PT/HLC assume that if a node performs two
consecutive events then the second event causally depends
upon the first one. Thus, the ordering is based solely on
the timestamps assigned to the events.

7 Conclusion

In this paper, we introduced the hybrid logical clocks
(HLC) that combines the benefits of logical clocks (LC)
and physical time (PT) while overcoming their shortcom-
ings. HLC guarantees that (one way) causal information
is captured, and hence, it can be used in place of LC. Since
HLC provides nodes a logical time that is within possible
clock drift of PT, HLC is substitutable for PT in any ap-
plication that requires it. HLC is strictly monotonic and,
hence, can be used in place of applications in order to
tolerate NTP kinks such as non-monotonic updates.

HLC can be implemented using 64 bits space, and
is backwards compatible with NTP clocks. Moreover,
HLC only reads NTP clock values but does not change
it. Hence, applications using HLC do not affect other ap-
plications that only rely on NTP.

HLC is highly resilient. Since its space requirement is
bounded by theoretical analysis and is shown to be even
more tightly bounded by our experiments, we use this as
a foundation to design stabilizing fault tolerance to HLC.

Since HLC refines LC, HLC can be used to obtain a
consistent snapshot for a snapshot read. Moreover, since

11

the drift between HLC and physical clock is less than the
clock drift, a snapshot taken with HLC is an acceptable
choice for a snapshot at a given physical time. Thus, HLC
is especially useful as a timestamping mechanism in mul-
tiversion distributed databases. For example in Spanner,
HLC can be used in place of TrueTime (TT) to overcome
one of the drawbacks of TT that requires events to be
delayed/blocked in the clock synchronization uncertainty
window. HLC allows the application events to be pro-
duced at the rate desired by the application.

References

[1] K. Bhatia, K. Marzullo, and L. Alvisi. Scalable
causal message logging for wide-area environments.
Concurrency and Computation: Practice and Expe-
rience, 15(10):873–889, 2003.

[2] J. Corbett, J. Dean, et al. Spanner: Google’s
globally-distributed database. Proceedings of OSDI,
2012.

[3] M. Demirbas and S. Kulkarni. Beyond truetime:
Using augmentedtime for improving google span-
ner. LADIS ’13: 7th Workshop on Large-Scale Dis-
tributed Systems and Middleware, 2013.

[4] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11), 1974.

[5] R. Escriva, A. Dubey, B. Wong, and E.G. Sirer. Kro-
nos: The design and implementation of an event or-
dering service. EuroSys, 2014.

[6] R. Fan and N. Lynch. Gradient clock synchroniza-
tion. In PODC, pages 320–327, 2004.

[7] J. Fidge. Timestamps in message-passing systems
that preserve the partial ordering. Proceedings of
the 11th Australian Computer Science Conference,
10(1):56–66, Feb 1988.

[8] K. Kingsbury. The trouble with times-
tamps. http://aphyr.com/posts/
299-the-trouble-with-timestamps.

[9] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault tol-
erance. SIGOPS Oper. Syst. Rev., 41(6):45–58, Oc-
tober 2007.

[10] S. Kulkarni and Ravikant. Stabilizing causal deter-
ministic merge. J. High Speed Networks, 14(2):155–
183, 2005.

[11] Avinash Lakshman and Prashant Malik. Cassandra:
Structured storage system on a p2p network. In Pro-
ceedings of the 28th ACM Symposium on Principles
of Distributed Computing, PODC ’09, pages 5–5,
2009.

[12] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the
ACM, 21(7):558–565, July 1978.

[13] The future of leap seconds. http:
//www.ucolick.org/˜sla/leapsecs/
onlinebib.html.

[14] Another round of leapocalypse. http:
//www.itworld.com/security/288302/
another-round-leapocalypse.

[15] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguica,
and R. Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. OSDI,
2012.

[16] W. Lloyd, M. Freedman, M. Kaminsky, and D. An-
dersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with cops. In
SOSP, pages 401–416, 2011.

[17] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi.
The flooding time synchronization protocol. SenSys,
2004.

[18] A. Mashtizadeh, A. Bittau, Y. Huang, and
D. Mazières. Replication, history, and grafting in
the ori file system. In SOSP, pages 151–166, 2013.

[19] F. Mattern. Virtual time and global states of dis-
tributed systems. Parallel and Distributed Algo-
rithms, pages 215–226, 1989.

[20] D. Mills. A brief history of ntp time: Memoirs of
an internet timekeeper. ACM SIGCOMM Computer
Communication Review, 33(2):9–21, 2003.

[21] B. Sigelman, L. Barroso, M. Burrows, P. Stephen-
son, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report,
Google, Inc., 2010.

[22] Y. Sovran, R. Power, M. Aguilera, and J. Li. Trans-
actional storage for geo-replicated systems. In
SOSP, pages 385–400, 2011.

12

[23] W. Vogels. Eventually consistent. Communications
of the ACM, 52(1):40–44, 2009.

[24] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. Madhyastha. Spanstore: Cost-effective geo-
replicated storage spanning multiple cloud services.
In SOSP, pages 292–308, 2013.

[25] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. Aguil-
era, and J. Li. Transaction chains: Achieving serial-
izability with low latency in geo-distributed storage
systems. In SOSP, pages 276–291, 2013.

13

