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Abstract. Many functions have to be written over and over again for dif-
ferent datatypes, either because datatypes change during the development
of programs, or because functions with similar functionality are needed on
different datatypes. Examples of such functions are pretty printers, debug-
gers, equality functions, unifiers, pattern matchers, rewriting functions, etc.
Such functions are called polytypic functions. A polytypic function is a func-
tion that is defined by induction on the structure of user-defined datatypes.
This paper introduces polytypic functions, and shows how to construct and
reason about polytypic functions. A larger example is studied in detail: poly-
typic functions for term rewriting and for determining whether a collection
of rewrite rules is normalising.

1 Introduction

Complex software systems contain many datatypes, which during the development
of the system will change regularly. Developing innovative and complex software is
typically an evolutionary process. Furthermore, such systems contain functions that
have the same functionality on different datatypes, such as equality functions, print
functions, parse functions, etc. Software should be written such that the impact
of changes to the software is as limited as possible. Polytypic programs are pro-
grams that adapt automatically to changing structure, and thus reduce the impact
of changes. This effect is achieved by writing programs such that they work for large
classes of datatypes.

Consider for example the function length :: List a -> Int, which counts the
number of values of type a in a list. There exists a very similar function length
:: Tree a —> Int, which counts the number of occurrences of a’s in a tree. We
now want to generalise these two functions into a single function which is not only
polymorphic in a, but also in the type constructor; we want to be able to write
something like length :: D a -> Int, where D ranges over type constructors. We
call such functions polytypic functions [20]. Once we have a polytypic length func-
tion, function length can be applied to values of any datatype. If a datatype is
changed, length still behaves as expected. For example, the datatype List a has
two constructors with which lists can be built: the empty list constructor, and the
cons constructor, which prepends an element to a list. If we add a constructor with
which we can append an element to a list, function length still behaves as expected,
and counts the number of elements in a list.



Polytypic functions are useful in many situations, for example in implementing
rewriting systems.

1.1 A problem

Suppose we want to write a term rewriting module. An example of a term rewriting
system is the algebra of numbers constructed with Zero, Succ, :+: and :*:, together
with the following term rewrite rules [24].

X :+: Zero -> x

x :+: Succy -> Succ (x :+: y)
X :*: Zero -> Zero

x :*: Succy -> (x :*: y) :+: x

where x and y are variables. For confluent and normalising term rewriting sys-
tems, the relation =, which rewrites a term to its normal form, is a function. For
example Suce (Succ Zero) :*: Succ (Succ Zero) —» Succ (Succ (Succ (Succ
Zero))).

We want to implement function = in a functional language such as Haskell [8],
that is, we want to define a function rewrite that takes a list of rewrite rules and
a term, and reduces redeces until no further reduction is possible. For the above
example, we first define two datatypes: the datatype of numbers, and the datatype
of numbers with variables, which is used for representing the rewrite rules. Variables
are represented by integers.

data Number = Zero

| Succ Number

| Number :+: Number
| Number :*: Number
data VNumber = Var Int

| VZero

| VSucc VNumber

| VNumber :++: VNumber
|

VNumber :*%*: VNumber

A rewrite rule is represented by a pair of values of type VNumber.

We want to use function rewrite on different datatypes: rewriting is independent
of the specific datatype. For example, we also want to be able to rewrite SKI terms,
where an SKI term is a term built with the constant constructors S, K, I, and the
application constructor :@:. We have the following rewrite rules for SKI terms:

((8 :@: x) :0: y) :@: z -> (x :0: z) :0: (y :0: z)
(K :0: x) :0: y -> x
I :0: x -> x



Since the type of function rewrite is independent of the specific datatype on which
it 18 going to be used, we want to define function rewrite in a class.

class Rewrite a b where

rewrite 0 [(b,b)] > a -> a
rewrite rs = fp (rewrite_step rs)
rewrite_step :: [(b,b)] > a -> a
fpfx | fx==x = x
| otherwise = fp f (f x)

Function rewrite_step finds a suitable redex (depending on the reduction strategy
used), and rewrites it.

There are a number of problems with this solution. First, the solution is illegal
Haskell, because of the two type variables in the class declaration. More impor-
tant is that the relation between a datatype without and with variables is lost in
the above declaration. But most important: although the informal description of
rewrite_step is independent of a specific datatype, we have to give an instance of
function rewrite_step on each datatype we want to use it. We would like to have
a module that supplies a rewrite function for each conceivable datatype.

1.2 A solution

We extend Haskell with the possibility of defining polytypic functions. A polytypic
function can be viewed as a family of functions: one function for each datatype. It is
defined by induction on the structure of user-defined datatypes. If we define function
rewrite_step as a polytypic function, then each time we use function rewrite_step
on a datatype, code for function rewrite_step is automatically generated. Polytypic
function definitions are type checked, and the generated functions are guaranteed
to be type correct. Polytypic functions add the possibility to define functions over
large classes of datatypes in a strongly typed language.

1.3 For whom?

Polytypic functions are general and abstract functions which occur often in everyday
programming, examples are equality == and map. Polytypic functions are useful when
building complex software systems, because they adapt automatically to changing
structure, and they are useful for:

— Implementing term rewriting systems, program transformation systems, pretty
printers, theorem provers, debuggers, and other general purpose systems that are
used to reason about and manipulate different datatypes in a structured way.



— Generalising Haskell’s [8] deriving construct. Haskell’s deriving construct can
be used to generate code for for example the equality function and the printing
function on a lot of datatypes. There exist five classes in Haskell that can be
used in the deriving construct, and users cannot add new classes to be used in
it. The functions in these classes are easily written as polytypic functions.

— Implementing Squiggol’s [28, 30, 31, 33] general purpose datatype independent
functions such as cata, map, zip, para etc.

— Implementing general purpose, datatype independent programs for unification
[14, 15], pattern matching [20], data compression [21], etc.

1.4 Writing polytypic programs
There exist various ways to implement polytypic programs. Three possibilities are:

— using a universal datatype;
— using higher-order polymorphism and constructor classes;
— using a special syntactic construct.

Polytypic functions can be written by defining a universal datatype, on which we
define the functions we want to have available for large classes of datatypes. These
polytypic functions can be used on a specific datatype by providing translation func-
tions to and from the universal datatype. An advantage of using a universal datatype
for implementing polytypic functions is that we do not need a language extension for
writing polytypic programs. However, using universal datatypes has several disad-
vantages: type information is lost in the translation phase to the universal datatype,
and type errors can occur when programs are run. Furthermore, different people will
use different universal datatypes, which will make program reuse more difficult.

If we use higher-order polymorphism and constructor classes for defining polytypic
functions [22, 15], type information is preserved, and we can use current functional
languages such as Gofer and Haskell for implementing polytypic functions. How-
ever, writing such programs is rather cumbersome: programs become cluttered with
instance declarations, and type declarations become cluttered with contexts. Fur-
thermore, it 1s hard to deal with mutual recursive datatypes.

Since the first two solutions to writing polytypic functions are dissatisfying, we have
extended Haskell with a syntactic construct for defining polytypic functions [16].
Thus polytypic functions can be implemented and type checked. The resulting lan-
guage is called Polyp. Consult the page

http://www.cs.chalmers.se/” johanj/polytypism/

to obtain a compiler that compiles Polyp into Haskell (which subsequently can be
compiled with a Haskell compiler), and for the latest developments on Polyp.

In order to be able to define polytypic functions we need access to the structure of the
datatype D a. In this paper we will restrict D a to be a so-called regular datatype.



A datatype D a 1s regular if it contains no function spaces, and if the arguments
of the datatype on the left- and right-hand side in its definition are the same. The
collection of regular datatypes contains all conventional recursive datatypes, such
as Int, List a, and different kinds of trees. Polytypic functions can be defined on
a larger class of datatypes, including datatypes with function spaces [32, 11], but
regular datatypes suffice for our purposes.

1.5 Background and related work

The basic idea behind polytypic programming is the idea of modelling datatypes as
initial functor-algebras. This is a relatively old idea, on which a large amount of lit-
erature exists, see, amongst others, Lehmann and Smyth [26], Manes and Arbib [29],
and Hagino [13].

Polytypic functions are widely used in the Squiggol community, see [10, 28, 30, 31,
33], where the ‘“Theory of Lists’ [4, 5, 19] is extended to datatypes that can be defined
by means of a regular functor. The polytypic functions used in Squiggol are general
recursive combinators such as catamorphisms (generalised folds), paramorphisms,
maps, etc. Sheard [42], and Bohm and Berarducci [2] give programs that automat-
ically synthesise these functions. In the language Charity [6] polytypic functions
like the catamorphism and map are automatically provided for each user-defined
datatype. Polytypic functions for specific problems, such as the maximum segment
sum problem and the pattern matching problem were first given by Bird et al. [3]
and Jeuring [20]. Special purpose polytypic functions such as the generalised ver-
sion of function length and the operator (==) can be found in [30, 34, 35, 40, 14].
Jay [18] has developed an alternative theory for polytypic functions, in which values
are represented by their structure and their contents.

Type systems for languages with constructs for writing polytypic functions have
been developed by Jay [17], Ruehr [38, 39], Sheard and Nelson [41], and Jansson
and Jeuring [16]. Our extension of Haskell is based on the type system described
in [16].

In object-oriented programming polytypic programming appears under the names
‘design patterns’ [12], and ‘adaptive object-oriented programming’ [27, 36]. In adap-
tive object-oriented programming methods are attached to groups of classes that
usually satisfy certain constraints. The adaptive object-oriented programming style
is very different from polytypic programming, but the resulting programs have very
similar behaviour.

1.6 Overview

This paper is organised as follows. Section 2 explains the relation between datatypes
and functors, and defines some basic (structured recursion) operators on some ex-
ample datatypes. Section 3 introduces polytypic functions. Section 4 shows how to
construct theorems for free for polytypic functions. Section 5 describes polytypic



functions for unification. Section 6 describes polytypic functions for rewriting terms,
and for determining whether a set of rewrite rules is normalising. Section 7 concludes
the paper.

2 Datatypes and functors

A datatype can be modelled by an initial object in the category of F-algebras,
where F is the functor describing the structure of the datatype. The essence of
polytypic programming is that functions can be defined by induction on the structure
of datatypes. This section introduces functors, and shows how they are used in
describing the structure of datatypes. The first subsection discusses a simple non-
recursive datatype. The other subsections discuss recursive datatypes, and give the
definitions of basic structured recursion operators on these datatypes.

Just as in imperative languages where it is preferable to use structured iteration
constructs such as while-loops and for-loops instead of unstructured gotos, it is
advantageous to use structured recursion operators instead of unrestricted recur-
sion when using a functional language. Structured programs are easier to reason
about and more amenable to (possibly automatic) optimisations than their unstruc-
tured counterparts. Furthermore, since polytypic functions are defined for arbitrary
datatypes, we cannot use traditional pattern matching in definitions of polytypic
functions, and the only resources for polytypic function definitions are structured
recursion operators. One of the most basic structured recursion operators is the cata-
morphism. This section defines catamorphisms on three datatypes, and shows how
catamorphisms can be used in the definitions of a lot of other functions. Furthermore,
it briefly discusses the fusion law for catamorphisms.

2.1 A datatype for computations that may fail

The datatype Maybe a is used to model computations that may fail to give a result.

data Maybe a = Nothing
|  Justa

For example, we can define the expression divide m n to be equal to Nothing if n
equals zero, and Just (m/n) otherwise.

To be able to use polytypic functions on the datatype Maybe a we have to extract
the structure of this type. The datatype Maybe a can be modelled by the type
Mu FMaybe a, where Mu is a special keyword that is used to denote datatypes
which are represented by means of their structure, FMaybe is a so-called functor
which describes the structure of the datatype Maybe a, and a is the argument of the
datatype. Since we are only interested in the structure of Maybe a, the names of the
constructors of Maybe a are not important. We define FMaybe using a conventional



notation by removing Maybe’s constructors (writing () for the empty space we obtain
by removing Nothing), and replacing | with +:

FMaybea = ()+a

where () is the empty product, the type containing one element, which is also denoted
by (). The sum type a+ b consists of left-tagged elements of type a, and right-tagged
elements of type b, and has constructors inl, which injects an element in the left
component of a sum, and nr, which injects an element into the right component of
a sum:

wml 0 a—a+b
mr o b—>a4b
We now abstract from the argument a in FMaybe. Function Par returns the param-

eter (the argument to the functor). Operator + and the empty product () are lifted
to the function level:

FMaybe = () + Par

The function inn injects values of type () 4+ a into the type Maybe a. It is a variant
of the function unit of the Maybe-monad. Function out is the inverse of function inn:
it projects values out of the type Maybe a.

wmn . FMaybe a — Maybe a
out :: Maybe a — FMaybe a

The definitions of these functions are omitted; in the polytypic programming system
Polyp these functions are automatically supplied by the system for each user-defined
datatype.

In category theory, a functor is a mapping between categories that preserves the
algebraic structure of the category. Since a category consists of objects (types) and
arrows (functions), a functor consists of two parts: a definition on types, and a
definition on functions. FMaybe takes a type and returns a type. The part of the
functor that takes a function and returns a function is called fmap.

fmap 1 (a = b) > FMaybe a — FMaybe b
fmap = \f—=id+f

The operator + is the ‘fmap’ on sums.

+) = (a—=2c)=b>d)—2a+b—oc+d
(f+9) (inlz) = inl(f )
(f-l-g) (inr y) = nr (g y)

Exercise Use functions inn, out, and fmap to define the function

map :: (a = b) = Mu FMaybe a — Mu FMaybe b



which takes a function f, and a value of type Mu FMaybe a, and returns Nothing
in case the argument equals Nothing, and Just (f x) in case the argument equals
Just x. (end of exercise)

A function that handles values of type Maybe a consists of two components: a com-
ponent that deals with Nothing, and a component that deals with values of the form
Just x. Such functions are called catamorphisms (abbreviated to cata). In general, a
catamorphism is a function that replaces constructors by functions. The definition
of a catamorphism on the datatype Maybe a is very simple; definitions of catamor-
phisms on recursive types are more involved. To use function cata, we need the
operator june, which takes a function f of type a — ¢ and a function g of type
b — ¢, and applies f to left-tagged values, and g to right-tagged values, throwing
away the tag information:

gune  (a—=¢)=(boc)osat+boc
(f ‘Junc' g) (inlz) = fu
(f gunc g) (inry) = gy

Function cata takes an argument e ‘junc’ f of type FMaybe a — b, and replaces the
representation of Nothingin Mu FMaybe a by e (), and the representation of Just in
Mu FMaybe a by f.

cata :: (FMaybe a — b) — Mu FMaybe a — b
cata = \g—g - oul

For example, the function size that takes a Maybe a-value and returns 0 if it is of
the form Nothing, and 1 otherwise, is defined by

size. = cata (\x = 0) ‘Junc' (\x — 1))

This might seem a complicated way to define function size, but we will see later that
this definition easily generalises to other datatypes. Another function that can be
defined by means of cata is the function map defined in the above exercise.

Exercise The Maybe-monad contains two functions: the unit and bind functions.
Function unzt 1s defined as the constructor function Just, and function bind takes a
value z :: Maybe a and a function f :: a — Maybe b, and returns Nothing in case
z equals Nothing, and returns f y in case x equals Just y. Define a function g for
which the following equality holds.

x ‘bind' f = catag x
where it is assumed that bind is defined on the type Mu FMaybe a. (end of exercise)

The prelude of Haskell 1.3 contains a function maybe defined by:

maybe ::a => (a -> b) -> Maybe a -> b
maybe n £ Nothing = n
maybe n £ (Just x) = f x



This function has the same functionality as function cata on the datatype Maybe a,
and we will use it in the rest of the paper whenever we need a catamorphism on
Maybe a.

2.2 A datatype for lists

Consider the datatype List a defined by
data List a = Nil| Cons a (List a)

Values of this datatype are built by prepending values of type a to a list. This
datatype can be viewed as the fixed point with respect to the second argument of
the datatype FList a # defined by

data FList a x = FNil| FCons a x

The datatype FList a © describes the structure of the datatype List a. Note that
FList has one argument more than FMaybe: FlList is a so-called bifunctor. The extra
argument is needed to represent the occurrence of the datatype List a in the right-
hand side of its definition. Again, since we are only interested in the structure of
List a, the names of the constructors of F'List are not important. Using the notation
introduced when defining FMaybe we obtain the following definition for FLust.

FlListax = ()+axux

Note that juxtaposition is replaced with x. The product type a x b consists of pairs
of elements, and has two destructors fst and snd:

fst w axb—oa
snd 1 axb—=b

We now abstract from the arguments @ and x in FList. Function Par returns the
parameter a (the first argument), and function Rec returns the recursive parameter
z (the second argument). Operators + and x and the empty product () are lifted
to the function level.

FList = () + Par X Rec

The initial object in the category of FList a-algebras (the fixed point of FList with re-
spect to its second component), denoted by Mu FList a, models the datatype List a.
The initial object consists of two parts: the datatype Mu FList a, and a strict con-
structor function inn, that constructs elements of the datatype Mu FList a.

inn 2 FList a (Mu FList a) - Mu FList a

Function inn combines the constructors Nil and Cons in a single constructor function
for the datatype Mu FList a. For example, the list containing only the integer 3,



Cons 3 Nil, is represented by inn (inr (3, inn (inl ()))). Function out is the inverse
of function nn.

out = Mu FList a — FList a (Mu FList a)

out (innx) =

This definition by pattern matching is meaningful because inn is a constructor func-
tion.

Exercise Write functions
head :: Mu FLista — a
which returns the first element of a nonempty list, and
tail @ Mu FList a — Mu FList a

which returns all but the last elements of a nonempty list, using functions out and
June. (end of exercise)

Function abstract takes a value of type List, and turns it into a value of type
Mu FlList.

abstract ::  List a — Mu FList a
abstract Nil = inn (inl ())
abstract (Cons x xs) = inn (inr (z, abstract xs))

So abstract (Cons (2, Cons (1, Nil))) equals inn (inr (2, inn (inr (1, inn (inl ()))))).
Function concrete is the inverse of function abstract: it coerces a value of Mu FList a
back to a value of List a.

concrete 1 Mu Flist a — List a
concrete (inn (inl ())) = Nil
concrete (inn (inr (x,2s))) = Cons x (concrete xs)

Functions abstract and concrete establish an isomorphism between Mu FList and
List.

FList takes two types and returns a type. FList is a bifunctor, which is witnessed
by the existence of a corresponding action, called fmap, on functions. Function fmap
takes two functions and returns a function.

fmap = (a—=¢)—> (b—>d)—> FlListab— FlListcd
fmap = \f—=\g—id+gx [ (1)

The operator x is the ‘fmap’ on products.

(x) = (a=c)=b>d)—oaxb—oexd

(fxg)(zy) = (fr,9y)



Exercise The type constructor FlList and the function fmap together form a bi-
functor. The proof of this fact requires a proof of

fmap fg - fmaphj = fmap (f - h) (g - J)

(where function application binds stronger than function composition). Prove this
equality. (end of exercise)

2.3 Catamorphisms on Mu FList a

Function size returns the number of elements in a Mu FList a (function length in
Haskell). Given an argument list, the value of function size can be computed by
replacing the constructor Ni by 0, and the constructor Cons by 14, for example,

Cons (2, Cons (5, Cons (3, Nil)))
1+ 1+ 1+ 0

So the size of this list is 3. We use a higher-order function to describe functions
that replace constructors by functions: the catamorphism. The catamorphism on
Mu FList a 1s the equivalent of function foldr on lists in Haskell. It is the ba-
sic structured recursion operator on Mu FList a. Function cata takes an argument
e ‘junc’ f of type FList a b — b, and replaces Cons by f, and Nil by e:
Cons (2, Cons (5, Cons (3, Nil)))
F@ F6, FB €)
Function cata is defined using function out to avoid a definition by pattern matching.
Function fmap id (cata f) applies cata f recursively to the rest of the list.
cata :: (FListab—b) — Mu FLista — b
cata = \f—f - fmapid (cata f) - out

We use function cata to define functions size and map on the datatype Mu FlList a.

size @ Mu FList a — Int
size = cata (\e = 0) ‘Junc’ (\(z,n) > n+1))

map (@ —=b) > Mu FList a = Mu FList b
map f = ecata (inn - fmap [ id)

The type constructor Mu FList and the function map form a functor, just as FList
and fmap form a functor.

Exercise Define function filter p, which given a predicate p takes a list and
removes all elements from the list that do not satisfy p, by means of function cata.
(end of exercise)

Exercise Haskell’s list selection operation as !! n selects the n-th element of the
list as, for example, [1,9,9,5] !'! 3 = 5. Using explicit recursion it reads:



() :: [a] -> Int —> a
(a:_ )10 = a
(_:as)!'!(n+1) as!'n

Give an equivalent definition of (!!) on the datatype Mu FList a using cata. Note
that the result of the cata has type Int — a. (end of exercise)

2.4 Fusion

Function cata satisfies the so-called Fusion {aw. The fusion law gives conditions under
which intermediate values produced by the catamorphism can be eliminated.

h - cata f = catayg
= (Fusion)
h-f = g - fmapidh

Fusion is a direct consequence of the free theorem [44] of the functional cata. Tt can
also be proved using induction over lists. If we allow partial or infinite lists we get
the extra requirement that h be strict.

We use Fusion to prove that the composition of abstract and concrete equals the
identity catamorphism:

abstract - concrete = cata inn (2)
It is easy to prove that cata inn = id, so the proof of equality (2) is the first half of

the proof that concrete and abstract establish an isomorphism.

To prove equality (2) we apply Fusion, using the fact that concrete equals the cata-
morphism cata ((const Nil) ‘junc’ (\ (z,2s) — Cons x ©s)).

abstract - concrete = cata inn
<<= (Fusion)

abstract - const Nil ‘junc’ (\(x,xs) — Cons x xs) = inn - fmap id abstract

where function application binds stronger than infix operator application. Using the
fact that function composition distributes over junc, and that a junc is uniquely
determined by its two components, the proof is now split into two parts. We have
to show that the following two equalities hold.

abstract (const Nil ()) = inn (fmap id abstract (inl ()))
abstract (\(z,zs) = Cons x xs) (z,xs)) = inn (fmap id abstract (inr (z,xs)))

Both equalities are direct consequences of the definition of abstract.



Exercise The type constructor Mu FList and the function map form a functor. The
proof of this fact requires a proof of

map f - map g = map (f - g)

Use fusion to prove this equality. (end of exercise)

2.5 A datatype for trees

The datatype Tree a is defined by
data Tree a = Leaf a | Bin (Tree a) (Tree a)

Applying the same procedure as for the datatype List a, we obtain the following
functor that describes the structure of the datatype Tree a.

FTree = Par+ Rec x Rec

Functions inn and out are defined in the same way as functions inn and out on
Mu FList a.

Exercise Write the function

ws_Leaf @ Mu FTree a — Bool

which determines whether or not its argument is a leaf, using function out. (end of

exercise)

Functions abstract and concrete are defined as follows on this datatype.

abstract 1 Tree a — Mu FTree a
abstract (Leaf ) = inn (inl )
abstract (Binl v) = inn (inr (abstract I, abstract r))
concrete @ Mu F'Tree a — Tree a
concrete (inn (inl ®)) = Leaf »
concrete (inn (inr (I,r))) = Bin (concrete l) (concrete r)

Function cata on Mu FTree a is defined in terms of functions out and fmap.

fmap = (a—=¢)—>(b—>d)—> FTreeab— FTreec d

fmap = \f—=\g—=f+gxyg (3)
cata = (FTreea b —b) = Mu FTreea — b

cata = \f— f - fmap id (cata f) - out



Note that the definition of cata on the datatype Mu FTree a is exactly the same
as the definition of cata on the datatype Mu FList a. Functions size and map are

defined by

size i Mu Flree a — Int
size. = cata (\e = 1 ‘junc' \(z,y) > 2+ y)

map (@ = b) = Mu FTree a — Mu FTree b
map f = cata (inn - fmap f id)

Exercise Define the function
min :: Orda= Mu FTree a — a

which returns the minimum element of a tree, by means of function cata. (end of
exercise)

Exercise Define function
flatten :: Mu FTree a — [a]

which returns a list containing the elements of the argument tree, using function
cata. (end of exercise)

Exercise Formulate the Fusion law for trees, and prove that
length - flatten = size

where function length returns the length of a list. (end of exercise)

2.6 Functors for datatypes

We have given functors that describe the structure of the datatypes Maybe a, List a
and Tree a. For each regular datatype D a there exists a bifunctor F' such that the
datatype is the fixed point in the category of F' a-algebras [28]. The argument a of F
encodes the parameters of the datatype D a. From the users point of view, a functor
is a value generated by the following datatype.

data ' = F 4+ F|()|Cont|F x F|MuF @F | Par| Rec

Here t is one of the basic types Bool, Int, etc., +, x, and @ are considered to be
binary infix constructors, and () is a unary constructor with no arguments. Using
this datatype, it 1s impossible to differentiate between the structure of datatypes
such as:

data Point a = Point (a,a)
data Point’a = Point’a a
FPoint = Par x Par



Functor F'Point describes the structure of both Point a and Point’ a. This implies
that 1t is impossible to use the fact that a constructor is curried or not in the
definition of a polytypic function. Polyp’s internal representation of a functor is (of
course) more involved. We note the following about the datatype of functors:

— The operators 4+ and x are right-associative, so f + ¢ 4+ h is represented as
f+(g+h). Operator x binds stronger than +. The empty product () is the unit
of x. Operator + may only occur at top level, so f x (g+ h) is an illegal functor.
This restriction corresponds to the syntactic restriction in Haskell which says
that | may only occur at the top level of datatype definitions.

— The alternative Mu F' @ F' in this datatype is used to describe the structure
of types that are defined in terms of other user-defined datatypes, such as the
datatype of rose-trees:

data Rose a = Fork a (List (Rose a))
FRose = Par x (Mu FList @ Rec)

— A datatype with more than one type argument can be represented by the type
Mu F (a1 + ...+ an), where each occurrence of a parameter in the datatype
gives a Parin F. We have not yet decided how to represent datatypes with more
than one type parameter in Polyp.

— In this paper we will not discuss mutually recursive datatypes, however, 1t will
be possible to define polytypic functions over mutually recursive datatypes in
Polyp.

— For a datatype that is defined using a constant type such as Int or Char we
use the Con functor. Consider for example the structure of the following simple
datatype of types:

data Type a = Const String | Var a | Fun (Type a) (Type a)
Flype = Con String+ Par+ Rec X Rec

and the datatype Type a is represented by Mu Flype a.

The use of functors in the representation of datatypes is central to polytypic pro-
gramming: families of functions (polytypic functions) are defined by induction on
functors.

Exercise Give the functor F'Erpr that describes the structure of the datatype Expr
a defined by

data Bzpra = Con a

|  Var String
| Add (Erpra) (Brzpra)
|  Min (Expr a) (Ezpr a)
|  Mul (Ezpr a) (Exzpr a)
|  Div (Expra) (Bxpra)



Define the catamorphism on the datatype Mu FEzpr a, and define subsequently the
function ewval, which takes an expression and an environment that binds variables to
values, and returns the value of the expression in the environment.

eval 1 Num a = Mu Fzpr a — [(String, a)] = a
(end of exercise)

Exercise Give the functor I'Stat, which describes the structure of the datatype Stat
a of statements, defined by

data Stat a = Assign String (Expr a)
|  IfThenElse (Expr a) (List (Stat a)) (List (Stat a))
|  While (Expr a) (List (Stat a))

(end of exercise)

3 Polytypic functions

This section introduces polytypic functions. We will define the polytypic versions
of functions fmap, cata, size, and map. We will briefly discuss a type system that
supports writing polytypic functions, and we will show how some of the functions
that can be derived in Haskell can be defined as polytypic functions. In the following
sections we will give some larger polytypic programs.

3.1 Basic polytypic functions

Functions inn and out

Functions inn and out are the basic functions with which elements of datatypes
are constructed and decomposed in definitions of polytypic functions. These two
functions are the only functions that can be used to manipulate values of datatypes
in polytypic functions. One way to implement function inn is to define it as as the
constructor function In of the datatype Mu:

data Mu £ a = In (f a (Mu f a))
inn :: fa (Mufa) ->Mufa
inn = In

Mu is a higher-order polymorphic type constructor: its argument £ is a type construc-
tor that takes two types and constructs a type. The datatype Mu is an abstraction
for datatypes, and i1s only used in types of polytypic functions. It is impossible to
produce elements of this type outside Polyp. Function out is the inverse of inn.

out it Mufa->fa (Muf a)
out (inn x) = x



Function out is our main means for avoiding definitions by pattern matching. Instead
of defining for example £ (Pattern x) = foo x we now define £ = foo . out,
where we assume that values of the form Pattern x have been transformed into
values of the form Mu f a for some f. This translation is taken care of by Polyp.

Functions fmap and pmap

A polytypic function is a function that is defined by induction on the structure of
user-defined datatypes, i.e., by induction on functors, or a function defined in terms
of such an inductive function.

A definition of a polytypic function by induction on functors starts with the keyword
polytypic, followed by the name of the function and its type. The type declaration
and the inductive definition of the function are separated by an equality sign. As a
first example, consider the function fmap, the definition of a functor on functions.
We will explain what we mean with this definition below.

polytypic fmap :: (a -> ¢) -> (b ->d) ->f ab->f cd

=\h j —>
case f of

f+g -> fmap h j -+- fmap h j
O -> id
Con t -> id
f*xg -> fmap h j -*— fmap h j
Mu f @ g -> pmap (fmap h j)
Par -> h
Rec -> j

pmap :: (a ->b) > Muf a->Mufbd

pmap = \h -> dinn . fmap h (pmap h) . out

data Sum a b = Inl a | Inr b

(-+-) it (a->¢) >(b->d) >Sumab->Sumcd
(f -+- g) (Inl x) = 1Inl (f x)

(f -+- g) (Inr x) = Inr (g x)

(-*%-) it (a->¢) > (b ->4d) > (a,b) > (c,d)

(f -x-g) (a,b) = (fa, gh)

One can see this definition as a definition of a family of functions, one for each £
on which fmap is used. For example, if fmap is used on an element of type FList
a b, then definition (1) of fmap is generated, and if fmap is used on an element of
type F'Tree a b, then definition (3) of fmap is generated. Note that the type variable
f has kind * -> * -> % that 1s, £ takes two types and produces a type. We call
variable £ a functor variable. Function fmap and function pmap, which is used in the
Mu £ @ g case, are mutually recursive. Note that the different cases in the definition



of a polytypic function correspond to the different components of the datatype for
functors described in Section 2.

Exercise Give the instance of function £fmap for the functor FRose. (end of exercise)

Function cata

Except for the type declaration, the definition of cata is the same as the definition of
cata on Mu FList a and Mu F'Tree a. Function cata recursively replaces constructors
by functions.

cata :: (fab->b) >Mufa-—>hD
cata = \h -> h . fmap id (cata h) . out

The polytypic function size is an example of a catamorphism. It takes a value x of
datatype Mu f a and counts the number of occurrences of values of type a in x.

size :: Mu f a -> Int
size = cata fsize

polytypic fsize :: £ a Int -> Int

= case f of
f+g -> fsize ‘junc‘ fsize
O > \x >0
Con t -> \x >0
f*g -> \(x,y) -> fsize x + fsize y
Mu f 6 g -> \x -> sum (pmap fsize x)
Par -> \x > 1
Rec -> \x > x
junc it (a->c¢c) >(b-—>c¢c) >Sumab->c
junc £ g (Inl x) = f x
junc £ g (Inr x) = g x

where function sum sums the integers of a value of an arbitrary datatype. If function
size is applied to a value of the datatype List @ or Tree a, Polyp generates the right
instantiation for function size.

Exercise The definition of function fsize requires the existence of polytypic func-
tions sum, which sums the integers in a value of an arbitrary datatype.

sum :: Num a => Mu f a -> a

Define function sum. (end of exercise)

The first argument of function cata is a function of type £ a b -> b. This kind
of functions can only be constructed by means of functions inn, out, fmap, and



functions defined by means of the polytypic construct. This implies that it is im-
possible to define the function eval on the datatype Expr a by means of a cata:
the functor for Expr a contains four occurrences of the functor Rec * Rec (for addi-
tion, subtraction, multiplication, and division of expressions, respectively), and each
polytypic function will behave in exactly the same way on these functors (so it will
either add, subtract, multiply or divide all binary expressions). If we want to use
function cata on a specific datatype we have to type the first argument of cata
explicitly with a functor type. For this purpose, we introduce the special keyword
Functor0f. For example, for the following simple datatype of numbers:

data Number = Zero

| Succ Number

| Number :+: Number
[

Number :*: Number

we can define the function that takes a Number and returns the equivalent integer

by

value :: Number -> Int
value = cata (fvalue :: FunctorOf Number -> Int)
where fvalue = const O ‘junc’
id ‘junc’

uncurry (+) ‘junc®
uncurry (*)

Here FunctorOf is a built-in ‘function’ that takes a regular datatype and returns a
representation of its corresponding functor. So Functor0f Number equals () + Rec
+ Rec * Rec + Rec * Rec.

3.2 Type checking definitions of polytypic functions

We want to be sure that functions generated by polytypic functions are type cor-
rect, so that no run-time type errors occur. For that purpose the polytypic program-
ming system type checks definitions of polytypic functions. This subsection briefly
discusses how to type check polytypic functions, the details of the type checking
algorithm can be found in [16].

In order to type check inductive definitions of polytypic functions the system has
to know the type of the polytypic function: higher-order unification is needed to
infer the type from the types of the functions in the case branches, and general
higher-order unification is undecidable. This is the reason why inductive definitions
of polytypic functions need an explicit type declaration. Given an inductive definition
of a polytypic function

polytypic foo :: ... f ...



= case f of
g+ h —> bar

where f i1s a functor variable, the rule for type checking these definitions checks
among others that the declared type of function foo, with g + h substituted for £,
1s an instance of the type of expression bar. For all of the expressions in the branches
of the case it is required that the declared type is an instance of the type of the
expression in the branch with the left-hand side of the branch substituted for £ in the
declared type. The expression g + h is an abstraction of a type, so by substituting g
+ h (or any of the other abstract type expressions) for £ in the type of foo we mean
the following: substitute g + h for £, and rewrite the expression obtained thus by
means of the following rewrite rules:

(f+g)ab -> Sum (f a b) (g a b)
Oab -=> 0

Cont ab ->

(f *xg)ab -> (fab, gab)
(Muf @g)ab -> Muf (gahb)

Par a b -> a

Rec a b -> b

As an example we take the case £ * g in the definition of fsize.

polytypic fsize :: £ a Int -> Int
= case F of

f*g > \(x,y) -> fsize x + fsize y

The type of the expression \(x,y) -> fsize x + fsize yis (f a Int, g a Int)
=> Int. Substituting the functor to the left of the arrow in the case branch, £ * g, for
f in the declared type £ a Int -> Int gives (f * g) a Int -> Int, and rewriting
this type using the type rewrite rules, gives (f a Int, g a Int) -> Int. This type
is equal to (and hence certainly an instance of) the type of the expression to the
right of the arrow in the case branch, so this part of the polytypic function definition
1s type correct.

The conversion from user-defined datatypes to an internal representation of the
datatype and vice versa is dealt with by the type checking algorithm. If a function
expects an argument of type Mu £ a for some £, and the actual argument has type
D a for some datatype D a, the type checking algorithm converts the type of the
argument to Mu £D a, where £D is the functor corresponding to the datatype D a,
and vice versa.



3.3 More examples of polytypic functions

In this subsection we define a polytypic version of the function match, which takes
a value of datatype Mu f a and a value of the same datatype to which a variable
has been added (a variable is represented by a nullary constructor, so this datatype
is of the form Mu (() + £) a), and returns a boolean denoting whether the second
matches the first element. This is an example of a function that applies to values of
different but related datatypes.

For the purpose of defining this function we define two auxiliary polytypic functions,
flatten and zip, which are useful in many other situations too.

Function flatten

Function flatten takes a value v of a datatype Mu f a, and returns the list contain-
ing all elements of type a occurring in v. For example, flatten (Bin (Bin (Leaf
1) (Leaf 3)) (Leaf 7)) equals [1,3,7]. This function is the central function in
Jay’s [18] representation of values of shapely types: a value of a shapely type is rep-
resented by its contents, obtained by flattening the value, and its structure, obtained
by removing all contents of the value.

flatten :: Mu f a -> [a]
flatten = cata fl

polytypic f1 :: £ a [a]l —> [a]
= case f of

f+g -> fl ‘junc‘ fl

O -> \x >[I

Con t -> \x > [1

f*xg -> \(x,y) > fl x ++ fl y

Mu f @ g -> concat . flatten . pmap fl
Par -> \x —> [x]

Rec > \x > x

By ordering the components of the constructors of datatypes we can make function
flatten return a preorder, an inorder, or a postorder traversal of a tree.

data PreTree a = Preleaf a | PreBin a (PreTree a) (PreTree a)
data InTree a InLeaf a | InBin (InTree a) a (InTree a)
data PostTree a = PostLeaf a | PostBin (PostTree a) (PostTree a) a

Exercise Variants of function £1 are the functions £1_right, which returns the list
of elements that occur at the recursive (right argument) position, £1_left, which
returns the list of elements that occur at the parameter (left argument) position,
and £1_all, which returns the list of elements that occur at both the recursive and
the parameter position.



polytypic fl1_left :: f a b -> [al
polytypic £fl_right :: f a b —> [b]
polytypic f1_all :: faa-> [al

Define functions f1_left, f1 right, and f1_all. (end of exercise)

Exercise Define the polytypic function structure that takes a value v of datatype
Mu f a and removes all contents of v, giving a value of type Mu £ (). (end of exer-
cise)

Function zip

Haskell’s zip function takes two lists, and pairs the elements at corresponding posi-
tions. If one list is longer than the other the extra elements are ignored. The polytypic
version of function zip, called pzip, zips two values of datatype Mu £ a; for exam-
ple, pzip (Bin (Leaf 1) (Leaf 2)) (Bin (Leaf ’a’) (Leaf ’b’)) equals the
tree Bin (Leaf (1,’a’)) (Leaf (2,’b’)). Since it is impossible to zip two ele-
ments that have different structure, pzip returns a value of the form Just x if the
values have the same shape, and Nothing otherwise. This implies that we need some
functions manipulating values with occurrences of Maybe values. Functions resultM
and bindM are the functions from the Maybe-monad.

resultl i1 a —> Maybe a
resultM x = Just x
bindM :: Maybe a -> (a -> Maybe b) -> Maybe b
bindM x £ = maybe Nothing f x
(>>=) = bindM
(<>) :: (a => Maybe b) -> (¢ -> Maybe a) -> ¢ -> Maybe b
(g<>f)a = fad>=g
where maybe :: b -> (a -> b) -> Maybe a -> b is an implementation of the

catamorphism on the datatype Maybe a. Function propagate is a polytypic func-
tion that propagates occurrences of Nothing in a value of a datatype to top level.
For example, if we apply propagate to Bin (Leaf Nothing) (Leaf (Just 1)) we
obtain Nothing.

propagate :: Mu f (Maybe a) -> Maybe (Mu f a)
propagate = cata (mapM inn . fprop)

polytypic fprop :: f (Maybe a) (Maybe b) -> Maybe (f a b)

= case f of
f+g -> sumprop . fprop —+- fprop
O -> Just

Con t -> Just



fx*xg -> prodprop . fprop —*- fprop
Mu f @ g -> propagate . pmap fprop

Par -> id

Rec -> id
sumprop :: Sum (Maybe a) (Maybe b) -> Maybe (Sum a b)
sumprop = mapM Inl ‘junc‘ mapM Inr
prodprop :: (Maybe a,Maybe b) -> Maybe (a,b)
prodprop (Just x,Just y) = Just (x,y)
prodprop _ = Nothing

where mapM is an implementation of the map function on the datatype Maybe a.
Function pzip first determines whether or not the outermost constructors are equal
by means of the auxiliary function fzip, and then applies pzip recursively to the
children of the argument.

pzip :: (Mu f a,Mu £ b) -> Maybe (Mu f (a,b))
pzip = ((Just . In) <> (fprop . fmap Just pzip) <> fzip)
.out —*- out

polytypic fzip :: (f a b,f ¢ d) -> Maybe (f (a,c) (b,d))
= case f of

f+g -> (sumprop . fzip —+- fzip) <> sumzip

O -> const (resultM ())

Con t -> resultM . fst

f*xg -> prodprop . fzip —*- fzip . prodzip

Mu f @ g -> (propagate . pmap fzip) <> pzip

Par -> resultM

Rec -> resultM
sumzip :: (Sum a b,Sum ¢ d) -> Maybe (Sum (a,c) (b,d))
sumzip (x,y) = case (x,y) of

(Inl s,Inl t) -> Just (Inl (s,t))
(Inr s,Inr t) -> Just (Inr (s,t))

- -> Nothing
prodzip 2 ((a,b),(c,d)) -> ((a,c),(b,d))
prodzip ((x,y),(s,t)) = ((x,s),(y,t))

Note that when fzip is applied to a pair of values that are represented by means of
the Con functor, we have (arbitrarily) chosen to return the first of these. Function
pzip is a strict function. To obtain a nonstrict version of function pzip, we define a
polytypic version of function zipWith, called pzipWith.



Function zipWith

Function pzipWith is more general than its specialised version on the datatype
of lists. It takes three functions three functions £, g, and h, and a pair of values
(x,y). If x and y have the same outermost constructor, function pzipWith is applied
recursively to the fzipped children of its constructor, the pairs at the parameters are
combined with function g, and the result of these applications is combined with
function f. If x and y have different outermost constructors, h computes the result
from x and y.

pzipWith :: (f ¢ d -> d) ->
((a,b) > ¢c) —>
((Mu £ a,Mu £ b) —> d) —>
(Mu £ a,Mu £ b) —> d
pzipWith £ g h (x,y) = maybe (h (x,y))
(f . fmap g (pzipWith £ g h))
(fzip (out x , out y))

The expression pzipWith inn has type ((a,b) -> ¢) -> ((Mu £ a,Mu £ b) ->
Mu £ ¢) => (Mu £ a,Mu £ b) -> Mu £ c, and is the natural generalisation of Has-
kell’s function zipWith. Function pzipWith can be used to implement a function
with the same (lazy) behaviour as Haskell’s zip for arbitrary datatypes.

Function match

Function match takes a value of a datatype Mu f a and a value of the same datatype
extended with a variable Mu (() + f), and returns a boolean denoting whether or
not the second value matches the first value. The subfunctor () denotes the variable.
A variable matches any value, and two values of type Mu £ and Mu (() + £) (not
the variable) match if they have the same outermost constructor, and if all of their
children match. For example, consider the datatypes Tree a and VarTree a defined

by

data Tree a = Leaf a | Bin (Tree a) (Tree a)
data VarTree a = Var | VLeaf a | VBin (VarTree a) (VarTree a)
The functors for these datatypes are defined by

FTree = Par+ Rec x Rec
FVarTree () + FTree

For example, the tree with variables VBin Var (VLeaf 3) matches the tree Bin
(Leaf 2) (Leaf 3). Function match is defined in terms of a function dist_left,
which distributes a sum on the left over a product, and a function plus_to_Sum,
which takes a polytypic sum, and returns a value of the Sum type.

dist_left :: (a, Sum b ¢) -> Sum (a,b) (a,c)
dist_left (a,Inl x) = 1Inl (a,x)



dist_left (a,Inr y) = Inr (a,y)

polytypic plus_to_Sum :: (£ + g) a b > Sum (f a b) (g a b)
= case f of _ —> id

where _ matches any functor. Function match first determines whether or not its
second argument 1s a variable, and returns True if that is the case. If its second
argument is not a variable, function match compares the outermost constructors of
its arguments by means of £zip, applies function match recursively, and checks that
all results of the recursive applications return True.

match :: (Mu f a , Mu (() + £) a) —> Bool
match = const True ‘junc‘ fmatch
.dist_left
.out —-*- (plus_to_Sum . out)

fmatch :: (fa (Mufa) , fa (Mau (() +f) a)) -> Bool
fmatch = maybe False (and . f1_all . fmap (uncurry (==)) match)
.fzip

where uncurry and and are defined in Haskell’s prelude. Note that the second argu-
ment of function match has to be a value of a datatype of which the first constructor
is a nullary constructor. So, in order to apply match, the order in which the con-
structors of a datatype are listed is significant. This is an undesirable situation, and
we will show how to write a position independent definition of a function similar to
match in Section 5.

3.4 Haskell’s deriving construct

In Haskell there is a possibility to derive some classes for datatypes. For example,
writing

data Tree a = Leaf a | Bin (Tree a) (Tree a) deriving Eq, Ord

generates instances of the class Eq (containing (==) and (/=)), and the class Ord
(containing (<), (<=), (>=), (>), max, and min) for the datatype Tree a. There
are five classes that can be derived in Haskell, besides the two classes above: Ix,
functions for manipulating array indices, Enum, functions for enumerating values of
a datatype, and Text, functions for printing values of a datatype. The functions in
the derived classes are typical examples of polytypic functions. In fact, one reason
for developing a language with which polytypic functions can be written was to
generalise the rather ad-hoc deriving construct. All functions in the classes that can
be derived can easily be written as polytypic functions, except for the functions in the
class Text. To be able to write the functions in the class Text as polytypic functions
we have to introduce a separate built-in function that gives access to constructor



names. In this subsection we will define the polytypic versions of functions (==),
written (!==!) and (<=), written (!'<=!) by means of which all functions in the
classes Eq and Ord are defined. Furthermore, we will give the function with which
values of a datatype can be printed. The definitions of the polytypic versions of the
functions in the other classes that can be derived can be found in Polyp’s libraries.

Function (!==!)

Equality on datatypes is defined as follows. Function (!==!) zips its arguments,
flattens the result to a list of pairs, and checks that each pair of values in this list
consists of equal values. The arguments have equal shape if pzip returns a value of
the form Just z for some z, and the arguments have equal contents if all pairs in
the list of pairs we obtain by flattening z consist of equal elements.

(r==1) :: Eqa=>Mufa->Mufa->Bool

x !'==!' 'y = maybe False
(all (uncurry (==)) . flatten)
(pzip (x,y))

Exercise Define function !'==! by means of function pzipWith. (end of exercise)

Function (!<=!)

The definition of function (!<=!) is more complicated than the definition of function
('==1). The Haskell report defines x <= y for an arbitrary datatype as follows:
the outermost constructor of x appears earlier in the datatype definition than the
outermost constructor of y, or x and y have the same outermost constructor, and
the children of x are lexicographically smaller than or equal to (under the ordering
(<=)) the children of y. This implies that we need to be able to obtain the position of
a constructor in its datatype definition. For this purpose we introduce the polytypic
function fcnumber, which given a value of type £ a b (usually obtained by means
of function out, so the b is often Mu £ a), returns the position of the constructor in
the definition of the datatype corresponding to Mu £ a.

polytypic fcnumber :: £ a b -> Int
= case f of
f + g -> fcnumber ‘junc‘ ((1+) . fcnumber)
-> const 0

Here we use the fact that + is right-associative. Function (!<=!) is now defined as
follows. Tt first fzips its arguments. If the arguments cannot be fzipped (i.e., fzip
returns Nothing), function order determines which of the arguments comes first in
the definition of the datatype, and returns LT, EQ, or GT accordingly. If the arguments
to (1<=1!) can be fzipped, functions order and (!<=!) are applied recursively, and
the results are combined by flatting the result, and folding from left to right until
we encounter a value unequal to EQ.



data Ordering = LT | EQ | GT

(r<=1) :: Ord a => Mu f a -> Mu f a -> Ordering
x !<=!' y = maybe (order (fcnumber (out x) , fcnumber (out y)))
(foldr op EQ
.fl_all
.fmap order (uncurry (!<=!))
)

(fzip (out x , out y))

where order (x,y) | x <y =1LT
| x ==y =EQ
| x >y =GT
op EQy =y
opx y=x

The class Text

The class Text contains functions for printing values of a datatype. To be able to
define the functions in the class Text as polytypic functions, we have to introduce
a separate built-in function that gives access to constructor names. This function is
called fconstructor name, and it is used in function constructor name.

fconstructor_name :: f a b —-> String
constructor_name :: Mu f a -> String
constructor_name = fconstructor_name . out

For example, constructor name (Cons 1 Nil) equals "Cons". We will use this
function in Section 5 for a function that behaves differently for different constructor
names.

4 Parametricity for polytypic functions

In “Theorems for free!” [44], Wadler shows how the parametricity theorem [37] can
be used to construct ‘free theorems’ for polymorphic functions. This free theorem is
obtained by just looking at the type of the function. For example, function head of
type [al -> a satisfies the theorem:

head . map f = f . head

for all strict functions £. And function length of type [al -> Int satisfies the
theorem:

length = 1length . map f

for all functions f. These theorems can be constructed automatically from the type
of a function. Some free theorems have proven to be very useful in transforming



programs, such as for example the fusion law [28], the free theorem of function
foldr, and the acid-rain theorem [43].

In this paper we have generalised function length to the function size of type Mu £
a —> Int. From the type of function size we can derive the following free theorem:

size = size . pmap f

where pmap is the map of type (a => b) => Mu £ a -> Mu f b. This theorem holds
for any £ that describes the structure of a regular datatype, and some examples of
datatypes on which this theorem holds are the datatype of lists and trees. So the
law for function length given above is an instance of the law for size. Thus we
obtain theorems for free for free: the above free theorem generates theorems for free
in Wadler’s sense.

In this subsection we will describe how to obtain a theorem for free for a polytypic
function, for references to proofs of parametricity, see [7].

4.1 Parametricity explained

The key to deriving theorems from types is to read types as relations. This section
outlines the essential ideas, and closely follows Wadler’s [44] approach. We assume
a basic knowledge of Wadler’s paper, and we assume the same restrictions as in
Wadler’s paper. We will use an informal Haskell like notation for relations and sets.

Theorems for free are obtained using the following theorem.

Theorem (Parametricity). If ¢ is a closed term of type F', then (¢,t) € @, where @
is the relation corresponding to the type F.

To use the parametricity theorem we have to explain how to obtain the relation
corresponding to a type. For this purpose, we introduce some notation for relations,
and we explain how to translate the types used in our programs into relations.

If a and b are sets, we write r :: a <-> b to indicate that r is a relation between
a and b. We will often represent r by a function of type (a,b) -> Bool which
returns True if and only if the pair of arguments is related by r. An example of
a relation is the identity relation id_a :: a <-> a defined by id.a (x,y) = x ==
y. If a relation binds at most one value of type b to any value of type a, it can be
represented by a function of type a -> b.

Our type language consists of constant types such as Bool and Int, and of three
type constructors: functor types £ a b, where f is a functor, function types a -> b,
and polymorphic types V a . t(a), where t is a function that given a type returns
a type (the V is usually not visible in our programs). We translate each of these
categories of types into relations.

Constant types as relations
Constant types such as Bool and Int, may simply be read as identity relations:
id Bool :: Bool <-> Bool, and id_Int :: Int <-> Int.



Functor types as relations

The function relate functor takes two relations r :: a <-> a’ ands :: b <>
b’ and two values of a functor typex :: £ a bandy :: £ a’ b’ and determines
whether or not x and y are related. x and y are related if they have the same structure
(so fzip (x,y) does not return Nothing), and if the arguments at the parameter
positions are related by r, and the arguments at the recursive positions are related
by s.

relate_functor :: ((a,a’) -> Bool) -> ((b,b’) —> Bool) ->
(fab, fa”b’) -> Bool
relate_functor r s = maybe False

(and . £f1_all . fmap r s)
.fzip

Note that only values of functor types with equal functors can be related to each
other; it 1s for example impossible to relate a sum type with a product type.

In the special case where r and s are functions of type a => a’ and b -> b’,
respectively, relate_functor can be defined as a function of type £ a b -> £ a’
b’.

relate_functor it (a->a’) >(b->b’) >fab->fa b
relate_functor r s = fmap r s

Function types as relations

Functions are related if they take related arguments into related results. The function
relate function takes two relationsr :: a <-> a’ ands :: b <-> b’, and two
values of a function typef :: a => band £’ :: a’ -> b’ and determines whether
or not £ and £’ are related. £ and £’ are related if and only if for all pairs (x,x?)
related by r, the pairs (f x,f’ x’) are related by s.

relate_function :: ((a,a’) —> Bool) -> ((b,b’) -> Bool) ->
(a->b, a’ => b’) -> Bool
relate_function r s (f,f’) =
and [s (f x , £2 x’) | x <- a, x’ <- a’, r (x,x’)]

where we informally assume that a and a’ are (possibly infinite) sets.

In the special case where r and s are functions, the relation relate function r
s need not necessarily be a function of type (a => b) -> (a’ => b’), but in this
case we have

relate_function :: Eq b’ => (a -> a’) -> (b -> b’) ->
(a->b, a’ -=> b’) -> Bool
relate_function r s (f,f’) = and [s (f x) == £’ (r x) | x <- al



Forall types as relations
Polymorphic functions are related if they take related types into related results.
Let r(s) be a relation depending on relation s. Then r corresponds to a function

from relations to relations, such that for every relation t :: a <-> a’ there is a
corresponding relation r(t) :: v(a) <-> v’(a’). The relation Vs . r(s) :: V
a . v(a) <->V a’ . v’(a’) is now defined by

relate_forall :: ((a <-> a’) -> (v(a) <> v’(a’)) —>

(v(a) , v’(a’)) -> Bool
relate_forall r (g,g’) = and [ r(s) (g,g’) | s <= (a <> a’)]

This definition should be read as: for all relations s :: a <-> a’, r(s) relates g
and g’.

The parametricity theorem requires the construction of the relation corresponding
to a type. This relation is obtained by recursively applying the relate functions
defined in this section to a given type. We will give two examples in the following
section.

4.2 Parametricity applied

In this section we give two examples of how to obtain free theorems for polytypic
functions by hand. Free theorems can be derived automatically, see Fegaras and
Sheard [9] for a function that given a type constructs its free theorem.

The free theorem for function size
Function size takes a value v of datatype Mu f a, and returns the number of oc-
currences of values of type a in v.

size ::Va . Mu f a —> Int

Parametricity ensures that (size,size) is an element of the relation corresponding
toV a . Mu £ a —> Int. The relation corresponding to this type is obtained by
recursively applying the relate functions:

relate_forall (relate_function (relate_functor (Mu f a)) id_Int)

If we apply this function to the pair of functions (size,size), the definition of
relate_forall says that we have to show that for all relations r :: a <-> a’, we
have

relate_function (relate_functor (Mu f r)) id_Int (size,size)

If we assume that r :: a -> a’ is a function, then relate functor (Mu f r) isa
function, namely the fmap on Mu f a: map r. Since in this case both arguments to
relate_function are functions, we obtain by definition of relate_function that
the above expression is equal to:



and [ id_Int (size x) == size (map r x) | x <- al
Since id_Int is the identity, this is equivalent to:
and [ size x == size (map r x) | x <- al

or, removing the informal list-comprehension notation, for all functions r :: a ->
a’, and for all x in a,

size x == size (map r x)

So first mapping a function r and then computing the size gives the same result as
immediately computing the size: mapping a function over a value does not change
its size.

The free theorem for function cata
Function cata has the following type:

Va .¥b . (fab->b) >Mufa->b

Parametricity ensures that the pair (cata,cata) is an element of the relation corre-
sponding to this type. To obtain this relation, we again apply the relate functions
recursively.

relate_forall
(relate_forall
(relate_function
(relate_function (relate_functor (f a b)) b)
(relate_function (relate_functor (Mu f a)) b)

)
)
If we apply this function to the pair of functions cata, the definition of the relation
relate_forall says that we have to show that for all relations r :: a <-> a’ and
s :: b <-> b’ we have:

relate_function
(relate_function (relate_functor (f r s)) s)
(relate_function (relate_functor (Mu f r)) s)
(cata,cata)

In the special case where r and s are functions, we have that relate functor (f r
s) is the function fmap r s, and relate functor (Mu f r) is the function map r.

relate_function
(relate_function (fmap r s) s)
(relate_function (map r) s)
(cata,cata)



By definition of relate_function, this is equivalent to: for all (£,£’) related by
relate function (fmap r s) s:

relate_function (map r) s (cata f , cata f’)
Since map r and s are functions, this is equivalent to: for all x,
s (cata f x) == cata £’ (map r x)

This equality holds provided the pair of functions (£,f’) is related by the relation
relate function (fmap r s) s, which, because fmap r s and s are functions, is
equivalent to: for all y,

s (f y) == £’ (fmap r s y)

Concluding, we have found that:
s (fy)==1" (fmapr s y) = s (cata f x) == cata £’ (map r x)

The fusion law given in Section 2.4 is an instance of this free theorem: instantiate
the theorem with the functor for lists, and with r the identity function.

Exercise Give the free theorem for functions flatten and pzip. (end of exercise)

Very likely the results of this section can be extended in the sense that for example
catamorphisms on different datatypes can be related, but the precise details are not
clear to us.

5 Polytypic unification

Unifying two expressions that may contain variables amounts to finding expressions
to substitute for the variables such that the two expressions are equal after per-
forming the substitution. Use of unification is widespread, such as in type inference
algorithms, rewriting systems, compilers, etc. [25]. The datatypes of the expressions
to be unified in the different examples are all different, so a polytypic unification
function is desirable. This section describes a polytypic unification algorithm.

As an example application of unification, consider the two expressions f(z, f(a,b))
and f(g(y,a),y), where » and y are variables and f, g, a and b are constants. Since
both expressions have an f on the outermost level, these expressions can be unified
if # and g(y, a) can be unified, and if f(a,b) and y can be unified. The substitution
{r = g(y,a),y — f(a,b)} unifies these two pairs of expressions. The original pair
of expressions is unified by applying the substitution twice (we have to apply the
substitution twice because variable y occurs in the expression substituted for ),

giving the unified expression f(g(f(a,b),a), f(a,b)).



Unification fails if its arguments have different outermost constructors or constants.
Unifying = with f(z) will give the substitution {# — f(x)}, which cannot be used
to make two expressions equal by means of a finite number of applications. Our
unification program does not fail in this case, but it is easy to extend it with a
function that determines whether or not a substitution is cyclic.

5.1 Definitions and outline of the algorithm

Function unify takes a pair of values of type Mu £ a, and returns either Nothing if
the pair of values is not unifiable, or it returns Just s where s is a substitution that
unifies the pair of values. In case the pair of values does not contain variables, func-
tion unify behaves exactly as the equality function, returning Just s, where s is
the empty substitution, if and only if the the argument values are equal. Unification
is defined on all datatypes Mu £ a, and it assumes that variables are integers pre-
ceded by a constructor the name of which starts with the string "Var". An example
datatype on which we might want to use unification is

data Type a = VarType Int | ConType a (List (Type a))
Function checkVar determines whether or not a value is a variable. If its argument

is a variable Var i (where the constructor Var may be followed by a string, for
example Type), function checkVar returns Just i, otherwise it returns Nothing.

checkVar :: Mu f a -> Maybe Int

checkVar = fcheckVar . out

fcheckVar :: £ ab -> Maybe Int

fcheckVar t = if "Var" == take 3 (fconstructor_name t)

then Just (fgetVar t)
else Nothing

polytypic fgetVar :: £ a b -> Int
= case f of
f+g -> fgetVar ‘junc‘ fgetVar
Con Int -> 1id
_ -> undefined
Function vars takes a value, and returns a list containing all variables that occur in
the value.

vars :: Mu f a -> [Int]
vars = cata fvars
where fvars x = maybe (concat (fl_right x)) (:[]) (fcheckVar x)

A substitution is a function from variables to expressions. We represent a substitution
by an association array:



type Subst f a = Array Int (Maybe (Mu £ a))
start_subst bounds array bounds
(map (:= Nothing) (range bounds))
addbind (i,t) arr = arr//[(i:=Just t)]
lookup i s = s'i

A unifier of a pair of expressions is a substitution that makes the two expressions
equal. A substitution s is at least as general as t if and only if t can be factored by
s, 1.e. there exists a substitution r such that t = r . s, where we treat substitutions
as functions. We want to define a function that given a pair of expressions finds the
most general substitution that unifies the pair, or, if it is not unifiable, reports an
error.

Exercise Define function
subst :: Subst f a->Muf a->Muf a

(end of exercise)

A pair of expressions has one of the following four forms. For each form we describe
how unification proceeds.

— A pair of equal variables. A variable is trivially unifiable with itself.

— A pair of expressions. To unify two expressions we first check that their outermost
constructors are equal, and subsequently that all children are pairwise unifiable.

— A pair of a variable and an expression (which may be a variable different from the
first variable). To unify a variable with a expression we include the association
of the variable with the expression in the substitution. If there already exists an
association for the variable, the old and new association have to be unified.

— A pair of an expression and a variable. To unify an expression with a variable
we apply the previous case with the arguments swapped.

Only the second case refers to the structure of expressions, the implementation of
the other cases is immediate.

5.2 Function unify

Function unify takes a pair of expressions, and returns its most general unifier. It
is defined in expressions of function unify’, which incrementally computes the sub-
stitution, and corresponding functions unifyList and unifyList’ for a list of pairs
of expressions. Function unifyList starts with the start substitution, and computes
the contribution of each pair of expressions to the substitution. It uses function
mfoldl, the monadic version of function foldl, to thread occurrences of Nothing
through the computation, and function varbounds, to determine the bounds of the
substitution array by computing the minimum and maximum variable number.



mfoldl :: (b -> a -> Maybe b) -> b -> [a] -> Maybe b
mfoldl £f e = foldl f’ (resultM e)
where f’ mb a =mb >>= \b -> f b a

varbounds :: [(Mu f a , Mu f a)] -> (Int,Int)
varbounds ts = let v = concat (map (\(x,y) -> vars x++vars y) ts)
in (minimum v,maximum v)

unify :: Ega=> (Mu f a, Mu £ a) -> Maybe (Subst f a)
unify p = unifylist [p]

unifylList xs unifylList’ (start_subst (varbounds xs)) xs
unifyList’ mfoldl unify’

Note that function varbounds assumes that each of its argument rewriting rules
contains at least one variable; it is easy to adjust varbounds such that it also works
for rewriting rules with no variables. The main unification engine is unify’ which
implements the description of the unification algorithm given above. It uses amongst
others function parEq, which checks that all pairs of values occurring at the param-
eter position in a value obtained from function fzip consist of equal values, and
function update, which checks that we do not try to unify a variable with an ex-
pression that contains the same variable, and which subsequently adds the binding
of the variable with the expression to the substitution obtained by unifying the old
expression bound to the variable with the new expression.

unify’:: Eq a => Subst £ a ->
(Mu f a , Mu £ a) —>
Maybe (Subst f a)
unify’ s (x,y) = uni (checkVar x , checkVar y)
where
uni (Just i , Just j ) | 1 == j = Just s
uni (Nothing , Nothing) = ((unifylList’ s . fl_right)
<> checkEq
<> fzip
) (out x , out y)
uni (Just 1 , _ ) = update s (i,y)
uni ( _ , Just j ) = update s (j,x)

checkEq r = 1if parEq r then Just r else Nothing

parEq :: Eq a => £ (a,a) b -> Bool
parEq = all (uncurry (==)) . fl_left

update :: Eq a => Subst £ a -> (Int , Mu f a) -> Maybe (Subst f a)
update s (i,t) = case lookup i s of

Nothing -> Just (addbind (i,t) s)

Just t’ -> unify’ (addbind (i,t) s) (t,t’)



If we want unification to fail in case a variable is bound to an expression that contains
the variable itself, we can add an occurs-check to function update, or we can check
afterwards that the resulting substitution is acyclic.

6 Polytypic term rewriting

Rewriting systems is another area in which polytypic functions are useful. A rewrit-
ing system is an algebra together with a set of rewriting rules. In a functional lan-
guage, the algebra is represented by a datatype, and the rewriting rules can be rep-
resented as a list of pairs of values of the datatype extended with variables. In this
section we will define a function rewrite which takes a set of rewrite rules of some
datatype extended with variables, and a value of the datatype without variables,
and rewrites this value by means of the rewriting rules using the parallel-innermost
strategy, until a normal form is reached. We use the parallel-innermost strategy be-
cause 1t 1s relatively easy to implement function rewrite as an efficient function
when using this strategy. Function rewrite does not check if the rewriting rules in
its first argument are normalising, so it will not terminate for certain inputs. The
other main function defined in this section is a function that determines whether a
set of rewriting rules is normalising. This function is based on a well-known method
of recursive path orderings, as developed by Dershowitz on the basis of a theorem
of Kruskal, see [24]. The results in this section are for a large part based on results
from Berglund [1], in which more applications of polytypic functions in rewriting
systems can be found.

6.1 A function for rewriting terms

Function rewrite takes two arguments with different but related types: a set of
rewrite rules of a datatype extended with variables, and a value of the datatype
without variables. To express this relation between the types of the arguments we
have to make the presence of variables visible in the type. Let Mu f a be an arbitrary
datatype. Then we can extend this datatype with variables (represented by integers)
by adding an extra component to the sum represented by £: Hu (Con Int + f) a.
Thus we obtain the following type for rewrite:

Mu (Con Int + f) a
(MuVar £ a , MuVar f a)

type MuVar f a
type Rule f a

rewrite :: [Rule f a] -> Mu f a -=> Mu f a

Later we will convert values of Mu f a to values of type HuVar f a and vice versa.
Functions toMuVar and fromMuVar take care of these type conversions. Function
toMuvar injects values of an arbitrary datatype into values of the datatype extended
with variables. The resulting value does not contain variables. Function fromMuVar



translates a variable-free value of the datatype extended with variables to the data-
type without variables. This function fails when 1t is applied to a value that does
contain variables.

toMuVar :: Mu f a -> MuVar f a
toMuVar = cata ftoMuVar

polytypic ftoMuVar :: £ a (MuVar £ a) -> MuVar f a
= case f of
_ -> \x -> inn (Inr x)
fromMuVar :: MuVar f a -=> Mu f a
fromMuVar = cata ffromMuVar

polytypic ffromMuVar :: (Con Int + £f) a (Mu f a) -> Mu £ a
= case f of
-> \(Inr x) -> inn x

We will define function rewrite in a number of stages. The first definition is a simple,
clearly correct but very inefficient implementation of rewrite. This definition will
subsequently be refined to a function with better performance.

A first definition of function rewrite

Function rewrite rewrites its second argument with the rules from its first argument
until 1t reaches a normal form. So function rewrite is the fixed-point of a function
that performs a single parallel-innermost rewrite step, function rewrite_step. The
fixed-point computation is surrounded by type conversions in order to be able to
apply the functions for unification given in the previous section.

rewrite rs = fromMuVar . rewrite’ rs . toMuVar
rewrite’ rs = fp (rewrite_step rs)
fpfx | fx !==!' x = x

| otherwise = f£p f fx

where fx = f x

rewrite_step :: [Rule £ a] -> MuVar f a -> MuVar f a

Function rewrite_step is the main rewriting engine. Given a set of rules and a
value x, it tries to rewrite all innermost redeces of x. This is achieved by applying
rewrite_step recursively to x, and only rewriting the innermost redeces. At each
recursive application function rewrite_step applies a function innermost. Function
innermost determines whether or not one of the children has been rewritten. Only if
this 1s not the case, it tries to reduce its argument. To determine whether or not one



of the children has been rewritten, function innermost compares ist argument with
the original argument of function rewrite_step. The recursive structure of function
rewrite_step is that of a cata, but it needs access to the original argument too.
Such functions are called paramorphisms [30].

para i (fab->Mufa->b)->Mufa->b

para h x = h (fmap id (para h) (out x)) x

rewrite_step rs = para (innermost rs)

innermost :: Eq a => [Rule £ a] -> (Con Int + £) a (MuVar f a) ->

MuVar £ a -> MuVar f a
innermost rs x’ x =
if (inn x’) !'/=! x then inn x’ else reduce rs x

reduce :: Eq a => [Rule £ a] -> MuVar f a -> MuVar f a

reduce [] t = t

reduce ((lhs,rhs):rs) t = case unify (lhs,t) of
Just s -> subst s rhs

Nothing -> reduce rs t

Function rewrite is extremely inefficient. For example, if we represent natural num-
bers with Succ and Zero, and we use the rewriting rules for Zero, Succ, :+:, and
:*: given in the introduction, it takes hundreds of millions of (Gofer) reductions
to rewrite the representation of 2% to the representation of 256. One reason why
rewrite is inefficient is that in each application of function rewrite step the ar-
gument is traversed top-down to find the innermost redeces. Another reason is that
function rewrite_step performs a lot of expensive comparisons.

Exercise Define a function rewrite that rewrites a term using the leftmost-inner-
most rewriting strategy. The only function that has to be rewritten is function
innermost:

innermost rs x’ x = if (inn x’) !/=! x then ... else reduce rs x

where the ... should be completed. The main idea here is to fzip x’ and out x,
and to use polytypic functions changed and left of type

polytypic changed :: £ (a,a) (b,b) -> Bool
polytypic left :: f (a,a) (b,b) > f a b

to obtain the leftmost-innermost reduced term. (end of exercise)

Avoiding unnecessary top-down traversals and comparisons
We want to obtain a function that rewrites a term in time proportional to the



number of steps needed to rewrite the term. As a first step towards such a function,
we replace the fixed-point computation by a double recursion. The double recursion
avolds the unnecessary top-down traversals in search for the innermost redeces. The
idea 1s to first recursively rewrite the children of the argument to normal form, and
only then rewrite the argument itself.

For confluent and normalising term rewriting systems we have that first applying
rewrite’ to the subterms of the argument, and subsequently to the argument itself,
gives the same result as applying function rewrite’ to the argument itself.

rewrite’ rs (inn x) = rewrite’ rs (inn (fmap id (rewrite’ rs) x))

It follows that function rewrite’ can be written as a catamorphism, which uses
function rewrite’ in the recursive step. This version of function rewrite is called
rewritec.

rewritec rs = cata frewrite
where frewrite x = rewrite’ rs (inn x)

Observe that in the recursive step, all subexpressions are in normal form. It follows
that the only possible term that can be rewritten is the argument inn x. If inn x
is a redex, then it is rewritten, and we proceed with rewriting the result. If inn x
is not a redex, then inn x is in normal form. We adjust function reduce such that
it returns Nothing if it does not succeed in rewriting its argument, and Just x if it
does succeed with x.

rewritec rs = cata frewrite
where
frewrite x = maybe (inn x) (rewritec rs) (reduce rs (inn x))

reduce :: Eq a => [Rule f a] -> MuVar f a -> Maybe (MuVar f a)

reduce [] t = Nothing
reduce ((lhs,rhs):rs) t = case unify (lhs, t) of
Just s -> Just (subst s rhs)

Nothing -> reduce rs t

This function rewrites 2% much faster than the first definition of function rewrite,
but it is still far from linear in the number of rewrite steps.

Efficient rewriting

A source of inefficiency in function rewritec is the occurrence of function rewritec
in frewrite. If reduce rs (inn x) returns some expression Just e, rewritec rs
is applied to e. When evaluating the expression rewritec rs e the whole expression
e 1s traversed to find the innermost redeces, including all subterms which are known
to be in normal form. For example, consider the expression 100 :*: 2, where 2 and
100 abbreviate their equivalents written with Succ and Zero. Applying the second



rule for :*:, this term is reduced to (100 :*: 1) :+: 100. Now, rewritec rs will
traverse both subexpressions 100, and find that they are in normal form, which we
already knew. To avoid these unnecessary traversals, function rewritec is rewritten
as follows. Instead of applying rewritec rs recursively to the reduced expression,
we apply a similar function recursively to the right-hand side of the rule with which
the expression is reduced. This avoids recursing over the expressions substituted
for the variables in this rule, which are known to be in normal form. To define this
function we use the polytypic version of function zipWith, called pzipWith. Function
pzipWith is used in the definition of frewrite to zip the right-hand side of a rule
with the expression obtained by substituting the appropriate expressions for the
variables in this rule. This means that in case pzipWith encounters two arguments
with a different outermost constructor, the left argument is a variable, and the right
argument is an expression in normal form substituted for the variable. In that case
we return the second argument. In case pzipWith encounters two arguments with
the same outermost constructor, it tries to rewrite the zipped expression.

rewritec rs = cata frewrite
where frewrite x = maybe (inn x) just (reduce rs (inn x))
just = pzipWith frewrite fst snd

reduce :: Eq a =>

[Rule £ a] -> MuVar f a -> Maybe (MuVar f a,MuVar f a)
reduce [] t = Nothing
reduce ((lhs,rhs):rs) t = case unify (lhs,t) of

Just s -> Just (rhs,subst s rhs)
Nothing -> reduce rs t

Since the argument t of reduce does not contain variables, t does not contribute to
bounds of the substitution array, and function reduce can be optimised as follows:

reduce [] t = Nothing
reduce ((lhs,rhs):rs) t = case unifylList’ start [(lhs,t)] of
Just s -> Just (rhs,subst s rhs)

Nothing -> reduce rs t
listArray (varbounds lhs) (repeat Nothing)
varbounds 1 = (minimum v,maximum v) where v = vars 1

where start

The resulting rewrite function is linear in the number of reduction steps needed to
rewrite a term to normal form. It rewrites the representation of 2% into the represen-
tation of 256 with the rules given for Zero, Succ, :+:, and :*: in the introduction
about 500 times faster than the original specification of function rewrite. This func-
tion can be further optimised by partially evaluating with respect to the rules; we
omit these optimisations.



6.2 Normalising sets of rewriting rules

Termination of function rewrite can only be guaranteed if its argument rules are
normalising. A set of rules is normalising if all terms are rewritten to normal form (i.e.
cannot be rewritten anymore) in a finite number of steps. It is undecidable whether
or not a set of rewriting rules is normalising (unless all rules do not contain variables),
but there exist several techniques that manage to prove normalising property for a
large class of normalising rewriting rules. A technique that works in many cases is
the method based on a well-known method of recursive path orderings, as developed
by Dershowitz on the basis of a theorem of Kruskal, see [24]. In this section we will
define a function normalise based on this technique.

normalise :: Eq a => [Rule f a] -> Bool

Note that if function normalise returns False for a given set of rules this does not
necessarily mean that the rules are not normalising, it only means that function
normalise did not succeed in constructing a witness for the normalising property
of the rules.

The recursive path orderings

The recursive path orderings technique for proving the normalising property is rather
complicated; it is based on a deep theorem from Kruskal. In this section we will see
the technique in action; see [24] for the theory behind this technique.

A set of rules of type [Rule £ a] is normalising according to the recursive path
orderings technique if we can find an ordering on the constructors of the datatype
MuVar f asuch that each left-hand side of a rule can be rewritten into its right-hand
side using a set of four special rules. These rules will be illustrated with the rewriting
rules for Zero, Succ, Add and Mul given in the introduction:

Var 1 :++: VZero -> Var 1

Var 1 :++: VSucc (Var 2) -> VSucc (Var 1 :++: Var 2)

Var 1 :**: VZero -> VZero

Var 1 :#%: VSucc (Var 2) -> (Var 1 :**: Var 2) :++: Var 1

We assume that the constructors of the datatype VNumber are ordered by Var <
VZero < VSucc < :++: < :*%:. The four rewriting rules with which left-hand sides
have to be rewritten into right-hand sides are the following:

— Place a mark on top of a term. A mark is denoted by an exclamation mark !.

— A marked value x with outermost constructor ¢ may be replaced by a value with
outermost constructor ¢’ < ¢, and with marked x’s occurring at the recursive
child positions of ¢’. For example, suppose y equals ! (Var 1 :++: VSucc (Var
2)), then y —> VSucc y, since VSucc < :++:.



— A mark on a value x may be passed on to zero or more children of x. For example,
the mark on y in the above example may be passed on to the subexpression
VSucc (Var 2), so !(Var 1 :++: VSucc (Var 2)) -> Var 1 :++: !(VSucc
(Var 2)).

— A marked value may be replaced by one of its children occurring at the recursive
positions. For example, ! (VSucc (Var 2)) -> Var 2.

Each of the right-hand sides of the rules for rewriting numbers can be rewritten to
its left-hand side using these rules. For example,

Var 1 :##%: VSucc (Var 2)
-> { Rule 1 }

'(Var 1 :**: VSucc (Var 2))
-> { Rule 2 }

' (Var 1 :**: VSucc (Var 2)) :++: !'(Var 1 :**: VSucc (Var 2))
-> { Rule 4 }

! (Var 1 :**: VSucc (Var 2)) :++: Var 1
-> { Rule 3 }

(Var 1 :**x: 1 (VSucc (Var 2))) :++: Var 1
-> { Rule 4 }

(Var 1 :**x: Var 2) :++: Var 1

It follows that the set of rules for rewriting numbers is normalising.

Exercise Rewrite the left-hand sides into their corresponding right-hand sides for
the other rules for rewriting numbers using the four special rewrite rules. (end of
exercise)

Exercise Show that the following set of rewrite rules is normalising using the re-
cursive path orderings technique.

S (nz) & x

“(zVy) — —xA-y
tA(yVz) = (eAy)V(eAz)
(zVy) Az = (2Az)V(yAz)

(end of exercise)

Function normalise

A naive implementation of a function normalise that implements the recursive
path orderings technique computes all possible orderings on the constructors, and
tests for each ordering whether or not each left-hand side can be rewritten to its
corresponding left-hand side using the four special rules. If it succeeds with one of
the orderings, the set of rewriting rules is normalising. Since the four special rules
themselves are not normalising this test may not terminate. To obtain a terminating
function normalise, we implement a restricted version of the four special rules.



Thus, function normalise does not fully implement the recursive path orderings
technique, but it still manages to prove the normalising property for a large class of
sets of rewriting rules.

normalise rules = or [all (1_to_r ord) rules | ord <- allords]
allords :: [Mu f a -> Int]
l tor :: Eqa=> (Mufa->1Int)-> (Muf a,Mu £ a) -> Bool

Function allords generates all orderings, where an ordering is a function that given
a value of the datatype returns an integer. Function 1_to_r implements a restricted
version of the four special rewrite rules.

Function allords is defined by means of two functions: function perms, which com-
putes all permutations of a list, and function fconstructors which returns a rep-
resenation of the list of all constructors of a datatype. The definition of function
perms is omitted.

polytypic fconstructors :: [f a b]
= case f of
f+g -> [Inl x | x <~ fconstructors] ++
[Inr y | y <~ fconstructors]
-> [undefined]

allords = map make_ord (perms fconstructors)
where make_ord 1 x = index (fcnumber (out x)) (map fcnumber 1)
index n (m:ms) | n ==m = 0
| otherwise = 1 + index n ms
index n [] = error "no index in list"

Exercise A straightforward optimisation of function normalise is obtained by only
generating those orderings that do not immediately fail given the argument rules.
For example, any ordering on VNumber with :#*: < :++: will immediately fail on
account of the fourth rewriting rule, which requires :++: < :#*%:. Define a function
that takes a set of rules and generates all orderings that are not immediately ruled
out on account of those rules. (end of exercise)

Finally, we have to implement function 1_to_r. Given an ordering and a rewriting
rule (1,r), function 1_to_r tries to rewrite 1 into r. Distinguish the following three
cases:

— The outermost constructor of the right-hand side, ocr, is larger than the out-
ermost constructor of the left-hand side, ocl, under the given ordering. In this
case it 1s impossible to rewrite 1 into r, and function 1_to_r returns False.

— ocr is smaller than ocl under the given ordering. In this case, function 1_to_r
computes the recursive components of the right-hand side. If there are no such,



it checks that the right-hand side itself is a subexpression of the left-hand side.
If there are recursive components, function 1_to_r checks that all of these are
subexpressions of the left-hand side. For this purpose we define function subexpr,
which takes two arguments, and determines whether or not the second argument
is a subexpression of the first argument. A subexpression of x does not have to
be a consecutive part of x, for example, the tree Bin (Leaf 3) (Leaf 2) is a
subexpression of the tree Bin (Bin (Leaf 3) (Leaf 4)) (Leaf 2). On lists,
subexpressions are usually called subsequences.

subexpr :: Egqa=>Mufa->Muf a->Bool
subexpr 1 r =
pzipWith (and . f1_all)
(uncurry (==))
(\(x,y) -> (any (‘subexpr‘ y) . fl_right . out) x)
(1,r)

— The outermost constructors are equal under the given ordering. In this case
function 1_to_r fzips the children of the left-hand side and the right-hand side.
It checks that all pairs of values appearing at the parameter position consist of
equal values, and it checks that there exists at least one recursive position pair.
Furthermore, for each pair of values (1,r) appearing at a recursive position,
1 to_r ord (1,r) has to hold.

We obtain the following definition of function 1_to_r.

1_to_r ord (1,r)

| ocl < ocr = False
| ocl > ocr = let x = fl_right (out r) in

if null x then subexpr 1 r else all (subexpr 1) x
| ocl == ocr =

maybe undefined
(\x -> parEq x && all’ (1_to_r ord) (fl_right x))
(fzip (out 1 , out r))
where ocl = ord 1
ocr = ord r

all’ p [1
all’ p xs

False

all p xs

where function parEq is defined in Section 5.

7 Conclusions and future work

This paper introduces polytypic programming: programming with polytypic func-
tions. Polytypic functions are useful in applications where programs are datatype



independent in nature. Typical example applications of this kind are the unification
and rewriting system examples discussed in this paper, and there exist many more
examples. Polytypic functions are also useful in the evolutionary process of develop-
ing complex software. Here, the important feature of polytypic functions is the fact
that they adapt automatically to changing structure.

The code generated for programs containing polytypic functions is usually only
slightly less efficient than datatype-specific code. In fact, polytypic programming
encourages writing libraries of generally applicable applications, which is an incen-
tive to write efficient code, see for example our library of rewriting functions.

The polytypic programming system Polyp 1s still under development. In the near
future Polyp will be able to handle mutual recursive datatypes, datatypes with
function spaces, and datatypes with multiple arguments.

Polytypic programming has many more applications than we have described in this
paper. A whole range of applications can be found in adaptive object-oriented pro-
gramming. Adaptive object-oriented programming is a kind of polytypic program-
ming, in which constructor names play an important role. For example, Palsberg et
al. [36] give a program that for an arbitrary datatype that contains the constructor
names Bind and Use, checks that no variable is used before it is bound. This pro-
gram is easily translated into a polytypic function, but we have yet to investigate
the precise relation between polytypic programming and adaptive object-oriented
programming.
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