
Polytypic ProgrammingJohan Jeuring and Patrik JanssonChalmers University of Technology and University of G�oteborgS-412 96 G�oteborg, Swedenemail: fjohanj,patrikjg@cs.chalmers.seAbstract. Many functions have to be written over and over again for dif-ferent datatypes, either because datatypes change during the developmentof programs, or because functions with similar functionality are needed ondi�erent datatypes. Examples of such functions are pretty printers, debug-gers, equality functions, uni�ers, pattern matchers, rewriting functions, etc.Such functions are called polytypic functions. A polytypic function is a func-tion that is de�ned by induction on the structure of user-de�ned datatypes.This paper introduces polytypic functions, and shows how to construct andreason about polytypic functions. A larger example is studied in detail: poly-typic functions for term rewriting and for determining whether a collectionof rewrite rules is normalising.1 IntroductionComplex software systems contain many datatypes, which during the developmentof the system will change regularly. Developing innovative and complex software istypically an evolutionary process. Furthermore, such systems contain functions thathave the same functionality on di�erent datatypes, such as equality functions, printfunctions, parse functions, etc. Software should be written such that the impactof changes to the software is as limited as possible. Polytypic programs are pro-grams that adapt automatically to changing structure, and thus reduce the impactof changes. This e�ect is achieved by writing programs such that they work for largeclasses of datatypes.Consider for example the function length :: List a -> Int, which counts thenumber of values of type a in a list. There exists a very similar function length:: Tree a -> Int, which counts the number of occurrences of a's in a tree. Wenow want to generalise these two functions into a single function which is not onlypolymorphic in a, but also in the type constructor; we want to be able to writesomething like length :: D a -> Int, where D ranges over type constructors. Wecall such functions polytypic functions [20]. Once we have a polytypic length func-tion, function length can be applied to values of any datatype. If a datatype ischanged, length still behaves as expected. For example, the datatype List a hastwo constructors with which lists can be built: the empty list constructor, and thecons constructor, which prepends an element to a list. If we add a constructor withwhich we can append an element to a list, function length still behaves as expected,and counts the number of elements in a list.



Polytypic functions are useful in many situations, for example in implementingrewriting systems.1.1 A problemSuppose we want to write a term rewriting module. An example of a term rewritingsystem is the algebra of numbers constructed with Zero, Succ, :+:, and :*:, togetherwith the following term rewrite rules [24].x :+: Zero -> xx :+: Succ y -> Succ (x :+: y)x :*: Zero -> Zerox :*: Succ y -> (x :*: y) :+: xwhere x and y are variables. For con
uent and normalising term rewriting sys-tems, the relation �!, which rewrites a term to its normal form, is a function. Forexample Succ (Succ Zero) :*: Succ (Succ Zero) �! Succ (Succ (Succ (SuccZero))).We want to implement function �! in a functional language such as Haskell [8],that is, we want to de�ne a function rewrite that takes a list of rewrite rules anda term, and reduces redeces until no further reduction is possible. For the aboveexample, we �rst de�ne two datatypes: the datatype of numbers, and the datatypeof numbers with variables, which is used for representing the rewrite rules. Variablesare represented by integers.data Number = Zero| Succ Number| Number :+: Number| Number :*: Numberdata VNumber = Var Int| VZero| VSucc VNumber| VNumber :++: VNumber| VNumber :**: VNumberA rewrite rule is represented by a pair of values of type VNumber.We want to use function rewrite on di�erent datatypes: rewriting is independentof the speci�c datatype. For example, we also want to be able to rewrite SKI terms,where an SKI term is a term built with the constant constructors S, K, I, and theapplication constructor :@:. We have the following rewrite rules for SKI terms:((S :@: x) :@: y) :@: z -> (x :@: z) :@: (y :@: z)(K :@: x) :@: y -> xI :@: x -> x



Since the type of function rewrite is independent of the speci�c datatype on whichit is going to be used, we want to de�ne function rewrite in a class.class Rewrite a b whererewrite :: [(b,b)] -> a -> arewrite rs = fp (rewrite_step rs)rewrite_step :: [(b,b)] -> a -> afp f x | f x == x = x| otherwise = fp f (f x)Function rewrite step �nds a suitable redex (depending on the reduction strategyused), and rewrites it.There are a number of problems with this solution. First, the solution is illegalHaskell, because of the two type variables in the class declaration. More impor-tant is that the relation between a datatype without and with variables is lost inthe above declaration. But most important: although the informal description ofrewrite step is independent of a speci�c datatype, we have to give an instance offunction rewrite step on each datatype we want to use it. We would like to havea module that supplies a rewrite function for each conceivable datatype.1.2 A solutionWe extend Haskell with the possibility of de�ning polytypic functions. A polytypicfunction can be viewed as a family of functions: one function for each datatype. It isde�ned by induction on the structure of user-de�ned datatypes. If we de�ne functionrewrite step as a polytypic function, then each time we use function rewrite stepon a datatype, code for function rewrite step is automatically generated. Polytypicfunction de�nitions are type checked, and the generated functions are guaranteedto be type correct. Polytypic functions add the possibility to de�ne functions overlarge classes of datatypes in a strongly typed language.1.3 For whom?Polytypic functions are general and abstract functions which occur often in everydayprogramming, examples are equality == and map. Polytypic functions are useful whenbuilding complex software systems, because they adapt automatically to changingstructure, and they are useful for:{ Implementing term rewriting systems, program transformation systems, prettyprinters, theorem provers, debuggers, and other general purpose systems that areused to reason about and manipulate di�erent datatypes in a structured way.



{ Generalising Haskell's [8] deriving construct. Haskell's deriving construct canbe used to generate code for for example the equality function and the printingfunction on a lot of datatypes. There exist �ve classes in Haskell that can beused in the deriving construct, and users cannot add new classes to be used init. The functions in these classes are easily written as polytypic functions.{ Implementing Squiggol's [28, 30, 31, 33] general purpose datatype independentfunctions such as cata, map, zip, para etc.{ Implementing general purpose, datatype independent programs for uni�cation[14, 15], pattern matching [20], data compression [21], etc.1.4 Writing polytypic programsThere exist various ways to implement polytypic programs. Three possibilities are:{ using a universal datatype;{ using higher-order polymorphism and constructor classes;{ using a special syntactic construct.Polytypic functions can be written by de�ning a universal datatype, on which wede�ne the functions we want to have available for large classes of datatypes. Thesepolytypic functions can be used on a speci�c datatype by providing translation func-tions to and from the universal datatype. An advantage of using a universal datatypefor implementing polytypic functions is that we do not need a language extension forwriting polytypic programs. However, using universal datatypes has several disad-vantages: type information is lost in the translation phase to the universal datatype,and type errors can occur when programs are run. Furthermore, di�erent people willuse di�erent universal datatypes, which will make program reuse more di�cult.If we use higher-order polymorphism and constructor classes for de�ning polytypicfunctions [22, 15], type information is preserved, and we can use current functionallanguages such as Gofer and Haskell for implementing polytypic functions. How-ever, writing such programs is rather cumbersome: programs become cluttered withinstance declarations, and type declarations become cluttered with contexts. Fur-thermore, it is hard to deal with mutual recursive datatypes.Since the �rst two solutions to writing polytypic functions are dissatisfying, we haveextended Haskell with a syntactic construct for de�ning polytypic functions [16].Thus polytypic functions can be implemented and type checked. The resulting lan-guage is called Polyp. Consult the pagehttp://www.cs.chalmers.se/~johanj/polytypism/to obtain a compiler that compiles Polyp into Haskell (which subsequently can becompiled with a Haskell compiler), and for the latest developments on Polyp.In order to be able to de�ne polytypic functions we need access to the structure of thedatatype D a. In this paper we will restrict D a to be a so-called regular datatype.



A datatype D a is regular if it contains no function spaces, and if the argumentsof the datatype on the left- and right-hand side in its de�nition are the same. Thecollection of regular datatypes contains all conventional recursive datatypes, suchas Int, List a, and di�erent kinds of trees. Polytypic functions can be de�ned ona larger class of datatypes, including datatypes with function spaces [32, 11], butregular datatypes su�ce for our purposes.1.5 Background and related workThe basic idea behind polytypic programming is the idea of modelling datatypes asinitial functor-algebras. This is a relatively old idea, on which a large amount of lit-erature exists, see, amongst others, Lehmann and Smyth [26], Manes and Arbib [29],and Hagino [13].Polytypic functions are widely used in the Squiggol community, see [10, 28, 30, 31,33], where the `Theory of Lists' [4, 5, 19] is extended to datatypes that can be de�nedby means of a regular functor. The polytypic functions used in Squiggol are generalrecursive combinators such as catamorphisms (generalised folds), paramorphisms,maps, etc. Sheard [42], and B�ohm and Berarducci [2] give programs that automat-ically synthesise these functions. In the language Charity [6] polytypic functionslike the catamorphism and map are automatically provided for each user-de�neddatatype. Polytypic functions for speci�c problems, such as the maximum segmentsum problem and the pattern matching problem were �rst given by Bird et al. [3]and Jeuring [20]. Special purpose polytypic functions such as the generalised ver-sion of function length and the operator (==) can be found in [30, 34, 35, 40, 14].Jay [18] has developed an alternative theory for polytypic functions, in which valuesare represented by their structure and their contents.Type systems for languages with constructs for writing polytypic functions havebeen developed by Jay [17], Ruehr [38, 39], Sheard and Nelson [41], and Janssonand Jeuring [16]. Our extension of Haskell is based on the type system describedin [16].In object-oriented programming polytypic programming appears under the names`design patterns' [12], and `adaptive object-oriented programming' [27, 36]. In adap-tive object-oriented programming methods are attached to groups of classes thatusually satisfy certain constraints. The adaptive object-oriented programming styleis very di�erent from polytypic programming, but the resulting programs have verysimilar behaviour.1.6 OverviewThis paper is organised as follows. Section 2 explains the relation between datatypesand functors, and de�nes some basic (structured recursion) operators on some ex-ample datatypes. Section 3 introduces polytypic functions. Section 4 shows how toconstruct theorems for free for polytypic functions. Section 5 describes polytypic



functions for uni�cation. Section 6 describes polytypic functions for rewriting terms,and for determining whether a set of rewrite rules is normalising. Section 7 concludesthe paper.2 Datatypes and functorsA datatype can be modelled by an initial object in the category of F -algebras,where F is the functor describing the structure of the datatype. The essence ofpolytypic programming is that functions can be de�ned by induction on the structureof datatypes. This section introduces functors, and shows how they are used indescribing the structure of datatypes. The �rst subsection discusses a simple non-recursive datatype. The other subsections discuss recursive datatypes, and give thede�nitions of basic structured recursion operators on these datatypes.Just as in imperative languages where it is preferable to use structured iterationconstructs such as while-loops and for-loops instead of unstructured gotos, it isadvantageous to use structured recursion operators instead of unrestricted recur-sion when using a functional language. Structured programs are easier to reasonabout and more amenable to (possibly automatic) optimisations than their unstruc-tured counterparts. Furthermore, since polytypic functions are de�ned for arbitrarydatatypes, we cannot use traditional pattern matching in de�nitions of polytypicfunctions, and the only resources for polytypic function de�nitions are structuredrecursion operators. One of the most basic structured recursion operators is the cata-morphism. This section de�nes catamorphisms on three datatypes, and shows howcatamorphisms can be used in the de�nitions of a lot of other functions. Furthermore,it brie
y discusses the fusion law for catamorphisms.2.1 A datatype for computations that may failThe datatype Maybe a is used to model computations that may fail to give a result.data Maybe a = Nothingj Just aFor example, we can de�ne the expression divide m n to be equal to Nothing if nequals zero, and Just (m=n) otherwise.To be able to use polytypic functions on the datatype Maybe a we have to extractthe structure of this type. The datatype Maybe a can be modelled by the typeMu FMaybe a, where Mu is a special keyword that is used to denote datatypeswhich are represented by means of their structure, FMaybe is a so-called functorwhich describes the structure of the datatype Maybe a, and a is the argument of thedatatype. Since we are only interested in the structure of Maybe a, the names of theconstructors of Maybe a are not important. We de�ne FMaybe using a conventional



notation by removingMaybe's constructors (writing () for the empty space we obtainby removing Nothing), and replacing j with +:FMaybe a = () + awhere () is the empty product, the type containing one element, which is also denotedby (). The sum type a+b consists of left-tagged elements of type a, and right-taggedelements of type b, and has constructors inl, which injects an element in the leftcomponent of a sum, and inr, which injects an element into the right component ofa sum: inl :: a! a + binr :: b! a+ bWe now abstract from the argument a in FMaybe. Function Par returns the param-eter (the argument to the functor). Operator + and the empty product () are liftedto the function level: FMaybe = () + ParThe function inn injects values of type () + a into the type Maybe a. It is a variantof the function unit of the Maybe-monad. Function out is the inverse of function inn:it projects values out of the type Maybe a.inn :: FMaybe a!Maybe aout :: Maybe a! FMaybe aThe de�nitions of these functions are omitted; in the polytypic programming systemPolyp these functions are automatically supplied by the system for each user-de�neddatatype.In category theory, a functor is a mapping between categories that preserves thealgebraic structure of the category. Since a category consists of objects (types) andarrows (functions), a functor consists of two parts: a de�nition on types, and ade�nition on functions. FMaybe takes a type and returns a type. The part of thefunctor that takes a function and returns a function is called fmap.fmap :: (a! b)! FMaybe a! FMaybe bfmap = nf ! id+ fThe operator + is the `fmap' on sums.(+) :: (a! c)! (b! d)! a+ b! c+ d(f + g) (inl x) = inl (f x)(f + g) (inr y) = inr (g y)Exercise Use functions inn, out, and fmap to de�ne the functionmap :: (a! b)!Mu FMaybe a!Mu FMaybe b



which takes a function f , and a value of type Mu FMaybe a, and returns Nothingin case the argument equals Nothing, and Just (f x) in case the argument equalsJust x. (end of exercise)A function that handles values of type Maybe a consists of two components: a com-ponent that deals with Nothing, and a component that deals with values of the formJust x. Such functions are called catamorphisms (abbreviated to cata). In general, acatamorphism is a function that replaces constructors by functions. The de�nitionof a catamorphism on the datatype Maybe a is very simple; de�nitions of catamor-phisms on recursive types are more involved. To use function cata, we need theoperator junc, which takes a function f of type a ! c and a function g of typeb ! c, and applies f to left-tagged values, and g to right-tagged values, throwingaway the tag information: junc :: (a! c)! (b! c)! a+ b! c(f `junc` g) (inl x) = f x(f `junc` g) (inr y) = g yFunction cata takes an argument e `junc` f of type FMaybe a! b, and replaces therepresentation of Nothing in Mu FMaybe a by e (), and the representation of Just inMu FMaybe a by f .cata :: (FMaybe a! b)!Mu FMaybe a! bcata = ng! g � outFor example, the function size that takes a Maybe a-value and returns 0 if it is ofthe form Nothing, and 1 otherwise, is de�ned bysize = cata ((nx! 0) `junc` (nx! 1))This might seem a complicated way to de�ne function size, but we will see later thatthis de�nition easily generalises to other datatypes. Another function that can bede�ned by means of cata is the function map de�ned in the above exercise.Exercise The Maybe-monad contains two functions: the unit and bind functions.Function unit is de�ned as the constructor function Just, and function bind takes avalue x :: Maybe a and a function f :: a ! Maybe b, and returns Nothing in casex equals Nothing, and returns f y in case x equals Just y. De�ne a function g forwhich the following equality holds.x `bind` f = cata g xwhere it is assumed that bind is de�ned on the type Mu FMaybe a. (end of exercise)The prelude of Haskell 1.3 contains a function maybe de�ned by:maybe :: a -> (a -> b) -> Maybe a -> bmaybe n f Nothing = nmaybe n f (Just x) = f x



This function has the same functionality as function cata on the datatype Maybe a,and we will use it in the rest of the paper whenever we need a catamorphism onMaybe a.2.2 A datatype for listsConsider the datatype List a de�ned bydata List a = Nil j Cons a (List a)Values of this datatype are built by prepending values of type a to a list. Thisdatatype can be viewed as the �xed point with respect to the second argument ofthe datatype FList a x de�ned bydata FList a x = FNil j FCons a xThe datatype FList a x describes the structure of the datatype List a. Note thatFList has one argument more than FMaybe: FList is a so-called bifunctor. The extraargument is needed to represent the occurrence of the datatype List a in the right-hand side of its de�nition. Again, since we are only interested in the structure ofList a, the names of the constructors of FList are not important. Using the notationintroduced when de�ning FMaybe we obtain the following de�nition for FList.FList a x = () + a� xNote that juxtaposition is replaced with �. The product type a� b consists of pairsof elements, and has two destructors fst and snd:fst :: a� b! asnd :: a� b! bWe now abstract from the arguments a and x in FList. Function Par returns theparameter a (the �rst argument), and function Rec returns the recursive parameterx (the second argument). Operators + and � and the empty product () are liftedto the function level. FList = () + Par� RecThe initial object in the category of FList a-algebras (the �xed point of FList with re-spect to its second component), denoted by Mu FList a, models the datatype List a.The initial object consists of two parts: the datatype Mu FList a, and a strict con-structor function inn, that constructs elements of the datatype Mu FList a.inn :: FList a (Mu FList a)!Mu FList aFunction inn combines the constructors Nil and Cons in a single constructor functionfor the datatype Mu FList a. For example, the list containing only the integer 3,



Cons 3 Nil, is represented by inn (inr (3; inn (inl ()))). Function out is the inverseof function inn. out :: Mu FList a! FList a (Mu FList a)out (inn x) = xThis de�nition by pattern matching is meaningful because inn is a constructor func-tion.Exercise Write functions head :: Mu FList a! awhich returns the �rst element of a nonempty list, andtail :: Mu FList a!Mu FList awhich returns all but the last elements of a nonempty list, using functions out andjunc. (end of exercise)Function abstract takes a value of type List, and turns it into a value of typeMu FList. abstract :: List a!Mu FList aabstract Nil = inn (inl ())abstract (Cons x xs) = inn (inr (x; abstract xs))So abstract (Cons (2;Cons (1;Nil))) equals inn (inr (2; inn (inr (1; inn (inl ()))))).Function concrete is the inverse of function abstract: it coerces a value ofMu FList aback to a value of List a. concrete :: Mu FList a! List aconcrete (inn (inl ())) = Nilconcrete (inn (inr (x; xs))) = Cons x (concrete xs)Functions abstract and concrete establish an isomorphism between Mu FList andList.FList takes two types and returns a type. FList is a bifunctor, which is witnessedby the existence of a corresponding action, called fmap, on functions. Function fmaptakes two functions and returns a function.fmap :: (a! c)! (b! d)! FList a b! FList c dfmap = nf ! ng ! id+ g � f (1)The operator � is the `fmap' on products.(�) :: (a! c)! (b! d)! a� b! c� d(f � g) (x; y) = (f x; g y)



Exercise The type constructor FList and the function fmap together form a bi-functor. The proof of this fact requires a proof offmap f g � fmap h j = fmap (f � h) (g � j)(where function application binds stronger than function composition). Prove thisequality. (end of exercise)2.3 Catamorphisms on Mu FList aFunction size returns the number of elements in a Mu FList a (function length inHaskell). Given an argument list, the value of function size can be computed byreplacing the constructor Nil by 0, and the constructor Cons by 1+, for example,Cons (2; Cons (5; Cons (3; Nil)))1+ 1+ 1+ 0So the size of this list is 3. We use a higher-order function to describe functionsthat replace constructors by functions: the catamorphism. The catamorphism onMu FList a is the equivalent of function foldr on lists in Haskell. It is the ba-sic structured recursion operator on Mu FList a. Function cata takes an argumente `junc` f of type FList a b! b, and replaces Cons by f , and Nil by e:Cons (2; Cons (5; Cons (3; Nil)))f (2; f (5; f (3; e)))Function cata is de�ned using function out to avoid a de�nition by pattern matching.Function fmap id (cata f) applies cata f recursively to the rest of the list.cata :: (FList a b! b)!Mu FList a! bcata = nf ! f � fmap id (cata f) � outWe use function cata to de�ne functions size and map on the datatype Mu FList a.size :: Mu FList a! Intsize = cata ((nx! 0) `junc` (n(x; n)! n+ 1))map :: (a! b)!Mu FList a!Mu FList bmap f = cata (inn � fmap f id)The type constructor Mu FList and the function map form a functor, just as FListand fmap form a functor.Exercise De�ne function filter p, which given a predicate p takes a list andremoves all elements from the list that do not satisfy p, by means of function cata.(end of exercise)Exercise Haskell's list selection operation as !! n selects the n-th element of thelist as, for example, [1,9,9,5] !! 3 = 5. Using explicit recursion it reads:



(!!) :: [a] -> Int -> a(a:_ )!!0 = a(_:as)!!(n+1) = as!!nGive an equivalent de�nition of (!!) on the datatype Mu FList a using cata. Notethat the result of the cata has type Int! a. (end of exercise)2.4 FusionFunction cata satis�es the so-called Fusion law. The fusion law gives conditions underwhich intermediate values produced by the catamorphism can be eliminated.h � cata f = cata g( (Fusion)h � f = g � fmap id hFusion is a direct consequence of the free theorem [44] of the functional cata. It canalso be proved using induction over lists. If we allow partial or in�nite lists we getthe extra requirement that h be strict.We use Fusion to prove that the composition of abstract and concrete equals theidentity catamorphism: abstract � concrete = cata inn (2)It is easy to prove that cata inn = id, so the proof of equality (2) is the �rst half ofthe proof that concrete and abstract establish an isomorphism.To prove equality (2) we apply Fusion, using the fact that concrete equals the cata-morphism cata ((const Nil) `junc` (n (x; xs)! Cons x xs)).abstract � concrete = cata inn( (Fusion)abstract � const Nil `junc` (n(x; xs)! Cons x xs) = inn � fmap id abstractwhere function application binds stronger than in�x operator application. Using thefact that function composition distributes over junc, and that a junc is uniquelydetermined by its two components, the proof is now split into two parts. We haveto show that the following two equalities hold.abstract (const Nil ()) = inn (fmap id abstract (inl ()))abstract ((n(x; xs)! Cons x xs) (x; xs)) = inn (fmap id abstract (inr (x; xs)))Both equalities are direct consequences of the de�nition of abstract.



Exercise The type constructor Mu FList and the functionmap form a functor. Theproof of this fact requires a proof ofmap f � map g = map (f � g)Use fusion to prove this equality. (end of exercise)2.5 A datatype for treesThe datatype Tree a is de�ned bydata Tree a = Leaf a j Bin (Tree a) (Tree a)Applying the same procedure as for the datatype List a, we obtain the followingfunctor that describes the structure of the datatype Tree a.FTree = Par+ Rec� RecFunctions inn and out are de�ned in the same way as functions inn and out onMu FList a.Exercise Write the functionis Leaf :: Mu FTree a! Boolwhich determines whether or not its argument is a leaf, using function out. (end ofexercise)Functions abstract and concrete are de�ned as follows on this datatype.abstract :: Tree a!Mu FTree aabstract (Leaf x) = inn (inl x)abstract (Bin l r) = inn (inr (abstract l; abstract r))concrete :: Mu FTree a! Tree aconcrete (inn (inl x)) = Leaf xconcrete (inn (inr (l; r))) = Bin (concrete l) (concrete r)Function cata on Mu FTree a is de�ned in terms of functions out and fmap.fmap :: (a! c)! (b! d)! FTree a b! FTree c dfmap = nf ! ng ! f + g � g (3)cata :: (FTree a b! b)!Mu FTree a! bcata = nf ! f � fmap id (cata f) � out



Note that the de�nition of cata on the datatype Mu FTree a is exactly the sameas the de�nition of cata on the datatype Mu FList a. Functions size and map arede�ned by size :: Mu FTree a! Intsize = cata (nx! 1 `junc` n(x; y)! x+ y)map :: (a! b)!Mu FTree a!Mu FTree bmap f = cata (inn � fmap f id)Exercise De�ne the functionmin :: Ord a)Mu FTree a! awhich returns the minimum element of a tree, by means of function cata. (end ofexercise)Exercise De�ne function 
atten :: Mu FTree a! [a]which returns a list containing the elements of the argument tree, using functioncata. (end of exercise)Exercise Formulate the Fusion law for trees, and prove thatlength � 
atten = sizewhere function length returns the length of a list. (end of exercise)2.6 Functors for datatypesWe have given functors that describe the structure of the datatypes Maybe a, List aand Tree a. For each regular datatype D a there exists a bifunctor F such that thedatatype is the �xed point in the category of F a-algebras [28]. The argument a of Fencodes the parameters of the datatype D a. From the users point of view, a functoris a value generated by the following datatype.data F = F + F j () j Con t j F � F j Mu F @ F j Par j RecHere t is one of the basic types Bool, Int, etc., +, �, and @ are considered to bebinary in�x constructors, and () is a unary constructor with no arguments. Usingthis datatype, it is impossible to di�erentiate between the structure of datatypessuch as: data Point a = Point (a; a)data Point' a = Point' a aFPoint = Par� Par



Functor FPoint describes the structure of both Point a and Point' a. This impliesthat it is impossible to use the fact that a constructor is curried or not in thede�nition of a polytypic function. Polyp's internal representation of a functor is (ofcourse) more involved. We note the following about the datatype of functors:{ The operators + and � are right-associative, so f + g + h is represented asf +(g+h). Operator � binds stronger than +. The empty product () is the unitof �. Operator + may only occur at top level, so f � (g+h) is an illegal functor.This restriction corresponds to the syntactic restriction in Haskell which saysthat | may only occur at the top level of datatype de�nitions.{ The alternative Mu F @ F in this datatype is used to describe the structureof types that are de�ned in terms of other user-de�ned datatypes, such as thedatatype of rose-trees:data Rose a = Fork a (List (Rose a))FRose = Par � (Mu FList @ Rec){ A datatype with more than one type argument can be represented by the typeMu F (a1 + : : : + an), where each occurrence of a parameter in the datatypegives a Par in F . We have not yet decided how to represent datatypes with morethan one type parameter in Polyp.{ In this paper we will not discuss mutually recursive datatypes, however, it willbe possible to de�ne polytypic functions over mutually recursive datatypes inPolyp.{ For a datatype that is de�ned using a constant type such as Int or Char weuse the Con functor. Consider for example the structure of the following simpledatatype of types:data Type a = Const String j Var a j Fun (Type a) (Type a)FType = Con String+ Par+Rec �Recand the datatype Type a is represented by Mu FType a.The use of functors in the representation of datatypes is central to polytypic pro-gramming: families of functions (polytypic functions) are de�ned by induction onfunctors.Exercise Give the functor FExpr that describes the structure of the datatype Expra de�ned by data Expr a = Con aj Var Stringj Add (Expr a) (Expr a)j Min (Expr a) (Expr a)j Mul (Expr a) (Expr a)j Div (Expr a) (Expr a)



De�ne the catamorphism on the datatype Mu FExpr a, and de�ne subsequently thefunction eval, which takes an expression and an environment that binds variables tovalues, and returns the value of the expression in the environment.eval :: Num a)Mu Expr a! [(String; a)]! a(end of exercise)Exercise Give the functor FStat, which describes the structure of the datatype Stata of statements, de�ned bydata Stat a = Assign String (Expr a)j IfThenElse (Expr a) (List (Stat a)) (List (Stat a))j While (Expr a) (List (Stat a))(end of exercise)3 Polytypic functionsThis section introduces polytypic functions. We will de�ne the polytypic versionsof functions fmap, cata, size, and map. We will brie
y discuss a type system thatsupports writing polytypic functions, and we will show how some of the functionsthat can be derived in Haskell can be de�ned as polytypic functions. In the followingsections we will give some larger polytypic programs.3.1 Basic polytypic functionsFunctions inn and outFunctions inn and out are the basic functions with which elements of datatypesare constructed and decomposed in de�nitions of polytypic functions. These twofunctions are the only functions that can be used to manipulate values of datatypesin polytypic functions. One way to implement function inn is to de�ne it as as theconstructor function In of the datatype Mu:data Mu f a = In (f a (Mu f a))inn :: f a (Mu f a) -> Mu f ainn = InMu is a higher-order polymorphic type constructor: its argument f is a type construc-tor that takes two types and constructs a type. The datatype Mu is an abstractionfor datatypes, and is only used in types of polytypic functions. It is impossible toproduce elements of this type outside Polyp. Function out is the inverse of inn.out :: Mu f a -> f a (Mu f a)out (inn x) = x



Function out is our mainmeans for avoiding de�nitions by pattern matching. Insteadof de�ning for example f (Pattern x) = foo x we now de�ne f = foo . out,where we assume that values of the form Pattern x have been transformed intovalues of the form Mu f a for some f. This translation is taken care of by Polyp.Functions fmap and pmapA polytypic function is a function that is de�ned by induction on the structure ofuser-de�ned datatypes, i.e., by induction on functors, or a function de�ned in termsof such an inductive function.A de�nition of a polytypic function by induction on functors starts with the keywordpolytypic, followed by the name of the function and its type. The type declarationand the inductive de�nition of the function are separated by an equality sign. As a�rst example, consider the function fmap, the de�nition of a functor on functions.We will explain what we mean with this de�nition below.polytypic fmap :: (a -> c) -> (b -> d) -> f a b -> f c d= \h j ->case f off + g -> fmap h j -+- fmap h j() -> idCon t -> idf * g -> fmap h j -*- fmap h jMu f @ g -> pmap (fmap h j)Par -> hRec -> jpmap :: (a -> b) -> Mu f a -> Mu f bpmap = \h -> inn . fmap h (pmap h) . outdata Sum a b = Inl a | Inr b(-+-) :: (a -> c) -> (b -> d) -> Sum a b -> Sum c d(f -+- g) (Inl x) = Inl (f x)(f -+- g) (Inr x) = Inr (g x)(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)(f -*- g) (a,b) = (f a , g b)One can see this de�nition as a de�nition of a family of functions, one for each fon which fmap is used. For example, if fmap is used on an element of type FLista b, then de�nition (1) of fmap is generated, and if fmap is used on an element oftype FTree a b, then de�nition (3) of fmap is generated. Note that the type variablef has kind * -> * -> *, that is, f takes two types and produces a type. We callvariable f a functor variable. Function fmap and function pmap, which is used in theMu f @ g case, are mutually recursive. Note that the di�erent cases in the de�nition



of a polytypic function correspond to the di�erent components of the datatype forfunctors described in Section 2.Exercise Give the instance of function fmap for the functor FRose. (end of exercise)Function cataExcept for the type declaration, the de�nition of cata is the same as the de�nition ofcata onMu FList a andMu FTree a. Function cata recursively replaces constructorsby functions.cata :: (f a b -> b) -> Mu f a -> bcata = \h -> h . fmap id (cata h) . outThe polytypic function size is an example of a catamorphism. It takes a value x ofdatatype Mu f a and counts the number of occurrences of values of type a in x.size :: Mu f a -> Intsize = cata fsizepolytypic fsize :: f a Int -> Int= case f off + g -> fsize `junc` fsize() -> \x -> 0Con t -> \x -> 0f * g -> \(x,y) -> fsize x + fsize yMu f @ g -> \x -> sum (pmap fsize x)Par -> \x -> 1Rec -> \x -> xjunc :: (a -> c) -> (b -> c) -> Sum a b -> cjunc f g (Inl x) = f xjunc f g (Inr x) = g xwhere function sum sums the integers of a value of an arbitrary datatype. If functionsize is applied to a value of the datatype List a or Tree a, Polyp generates the rightinstantiation for function size.Exercise The de�nition of function fsize requires the existence of polytypic func-tions sum, which sums the integers in a value of an arbitrary datatype.sum :: Num a => Mu f a -> aDe�ne function sum. (end of exercise)The �rst argument of function cata is a function of type f a b -> b. This kindof functions can only be constructed by means of functions inn, out, fmap, and



functions de�ned by means of the polytypic construct. This implies that it is im-possible to de�ne the function eval on the datatype Expr a by means of a cata:the functor for Expr a contains four occurrences of the functor Rec * Rec (for addi-tion, subtraction, multiplication, and division of expressions, respectively), and eachpolytypic function will behave in exactly the same way on these functors (so it willeither add, subtract, multiply or divide all binary expressions). If we want to usefunction cata on a speci�c datatype we have to type the �rst argument of cataexplicitly with a functor type. For this purpose, we introduce the special keywordFunctorOf. For example, for the following simple datatype of numbers:data Number = Zero| Succ Number| Number :+: Number| Number :*: Numberwe can de�ne the function that takes a Number and returns the equivalent integerby value :: Number -> Intvalue = cata (fvalue :: FunctorOf Number -> Int)where fvalue = const 0 `junc`id `junc`uncurry (+) `junc`uncurry (*)Here FunctorOf is a built-in `function' that takes a regular datatype and returns arepresentation of its corresponding functor. So FunctorOf Number equals () + Rec+ Rec * Rec + Rec * Rec.3.2 Type checking de�nitions of polytypic functionsWe want to be sure that functions generated by polytypic functions are type cor-rect, so that no run-time type errors occur. For that purpose the polytypic program-ming system type checks de�nitions of polytypic functions. This subsection brie
ydiscusses how to type check polytypic functions, the details of the type checkingalgorithm can be found in [16].In order to type check inductive de�nitions of polytypic functions the system hasto know the type of the polytypic function: higher-order uni�cation is needed toinfer the type from the types of the functions in the case branches, and generalhigher-order uni�cation is undecidable. This is the reason why inductive de�nitionsof polytypic functions need an explicit type declaration. Given an inductive de�nitionof a polytypic functionpolytypic foo :: ... f ...



= case f ofg + h -> bar...where f is a functor variable, the rule for type checking these de�nitions checksamong others that the declared type of function foo, with g + h substituted for f,is an instance of the type of expression bar. For all of the expressions in the branchesof the case it is required that the declared type is an instance of the type of theexpression in the branch with the left-hand side of the branch substituted for f in thedeclared type. The expression g + h is an abstraction of a type, so by substituting g+ h (or any of the other abstract type expressions) for f in the type of foo we meanthe following: substitute g + h for f, and rewrite the expression obtained thus bymeans of the following rewrite rules:(f + g) a b -> Sum (f a b) (g a b)() a b -> ()Con t a b -> t(f * g) a b -> (f a b , g a b)(Mu f @ g) a b -> Mu f (g a b)Par a b -> aRec a b -> bAs an example we take the case f * g in the de�nition of fsize.polytypic fsize :: f a Int -> Int= case F of...f * g -> \(x,y) -> fsize x + fsize y...The type of the expression n(x,y) -> fsize x + fsize y is (f a Int, g a Int)-> Int. Substituting the functor to the left of the arrow in the case branch, f * g, forf in the declared type f a Int -> Int gives (f * g) a Int -> Int, and rewritingthis type using the type rewrite rules, gives (f a Int, g a Int) -> Int. This typeis equal to (and hence certainly an instance of) the type of the expression to theright of the arrow in the case branch, so this part of the polytypic function de�nitionis type correct.The conversion from user-de�ned datatypes to an internal representation of thedatatype and vice versa is dealt with by the type checking algorithm. If a functionexpects an argument of type Mu f a for some f, and the actual argument has typeD a for some datatype D a, the type checking algorithm converts the type of theargument to Mu fD a, where fD is the functor corresponding to the datatype D a,and vice versa.



3.3 More examples of polytypic functionsIn this subsection we de�ne a polytypic version of the function match, which takesa value of datatype Mu f a and a value of the same datatype to which a variablehas been added (a variable is represented by a nullary constructor, so this datatypeis of the form Mu (() + f) a), and returns a boolean denoting whether the secondmatches the �rst element. This is an example of a function that applies to values ofdi�erent but related datatypes.For the purpose of de�ning this function we de�ne two auxiliary polytypic functions,flatten and zip, which are useful in many other situations too.Function flattenFunction flatten takes a value v of a datatype Mu f a, and returns the list contain-ing all elements of type a occurring in v. For example, flatten (Bin (Bin (Leaf1) (Leaf 3)) (Leaf 7)) equals [1,3,7]. This function is the central function inJay's [18] representation of values of shapely types: a value of a shapely type is rep-resented by its contents, obtained by 
attening the value, and its structure, obtainedby removing all contents of the value.flatten :: Mu f a -> [a]flatten = cata flpolytypic fl :: f a [a] -> [a]= case f off + g -> fl `junc` fl() -> \x -> []Con t -> \x -> []f * g -> \(x,y) -> fl x ++ fl yMu f @ g -> concat . flatten . pmap flPar -> \x -> [x]Rec -> \x -> xBy ordering the components of the constructors of datatypes we can make functionflatten return a preorder, an inorder, or a postorder traversal of a tree.data PreTree a = PreLeaf a | PreBin a (PreTree a) (PreTree a)data InTree a = InLeaf a | InBin (InTree a) a (InTree a)data PostTree a = PostLeaf a | PostBin (PostTree a) (PostTree a) aExercise Variants of function fl are the functions fl right, which returns the listof elements that occur at the recursive (right argument) position, fl left, whichreturns the list of elements that occur at the parameter (left argument) position,and fl all, which returns the list of elements that occur at both the recursive andthe parameter position.



polytypic fl_left :: f a b -> [a]polytypic fl_right :: f a b -> [b]polytypic fl_all :: f a a -> [a]De�ne functions fl left, fl right, and fl all. (end of exercise)Exercise De�ne the polytypic function structure that takes a value v of datatypeMu f a and removes all contents of v, giving a value of type Mu f (). (end of exer-cise)Function zipHaskell's zip function takes two lists, and pairs the elements at corresponding posi-tions. If one list is longer than the other the extra elements are ignored. The polytypicversion of function zip, called pzip, zips two values of datatype Mu f a; for exam-ple, pzip (Bin (Leaf 1) (Leaf 2)) (Bin (Leaf 'a') (Leaf 'b')) equals thetree Bin (Leaf (1,'a')) (Leaf (2,'b')). Since it is impossible to zip two ele-ments that have di�erent structure, pzip returns a value of the form Just x if thevalues have the same shape, and Nothing otherwise. This implies that we need somefunctions manipulating values with occurrences of Maybe values. Functions resultMand bindM are the functions from the Maybe-monad.resultM :: a -> Maybe aresultM x = Just xbindM :: Maybe a -> (a -> Maybe b) -> Maybe bbindM x f = maybe Nothing f x(>>=) = bindM(<>) :: (a -> Maybe b) -> (c -> Maybe a) -> c -> Maybe b(g <> f) a = f a >>= gwhere maybe :: b -> (a -> b) -> Maybe a -> b is an implementation of thecatamorphism on the datatype Maybe a. Function propagate is a polytypic func-tion that propagates occurrences of Nothing in a value of a datatype to top level.For example, if we apply propagate to Bin (Leaf Nothing) (Leaf (Just 1)) weobtain Nothing.propagate :: Mu f (Maybe a) -> Maybe (Mu f a)propagate = cata (mapM inn . fprop)polytypic fprop :: f (Maybe a) (Maybe b) -> Maybe (f a b)= case f off + g -> sumprop . fprop -+- fprop() -> JustCon t -> Just



f * g -> prodprop . fprop -*- fpropMu f @ g -> propagate . pmap fpropPar -> idRec -> idsumprop :: Sum (Maybe a) (Maybe b) -> Maybe (Sum a b)sumprop = mapM Inl `junc` mapM Inrprodprop :: (Maybe a,Maybe b) -> Maybe (a,b)prodprop (Just x,Just y) = Just (x,y)prodprop _ = Nothingwhere mapM is an implementation of the map function on the datatype Maybe a.Function pzip �rst determines whether or not the outermost constructors are equalby means of the auxiliary function fzip, and then applies pzip recursively to thechildren of the argument.pzip :: (Mu f a,Mu f b) -> Maybe (Mu f (a,b))pzip = ((Just . In) <> (fprop . fmap Just pzip) <> fzip).out -*- outpolytypic fzip :: (f a b,f c d) -> Maybe (f (a,c) (b,d))= case f off + g -> (sumprop . fzip -+- fzip) <> sumzip() -> const (resultM ())Con t -> resultM . fstf * g -> prodprop . fzip -*- fzip . prodzipMu f @ g -> (propagate . pmap fzip) <> pzipPar -> resultMRec -> resultMsumzip :: (Sum a b,Sum c d) -> Maybe (Sum (a,c) (b,d))sumzip (x,y) = case (x,y) of(Inl s,Inl t) -> Just (Inl (s,t))(Inr s,Inr t) -> Just (Inr (s,t))_ -> Nothingprodzip :: ((a,b),(c,d)) -> ((a,c),(b,d))prodzip ((x,y),(s,t)) = ((x,s),(y,t))Note that when fzip is applied to a pair of values that are represented by means ofthe Con functor, we have (arbitrarily) chosen to return the �rst of these. Functionpzip is a strict function. To obtain a nonstrict version of function pzip, we de�ne apolytypic version of function zipWith, called pzipWith.



Function zipWithFunction pzipWith is more general than its specialised version on the datatypeof lists. It takes three functions three functions f, g, and h, and a pair of values(x,y). If x and y have the same outermost constructor, function pzipWith is appliedrecursively to the fzipped children of its constructor, the pairs at the parameters arecombined with function g, and the result of these applications is combined withfunction f. If x and y have di�erent outermost constructors, h computes the resultfrom x and y.pzipWith :: (f c d -> d) ->((a,b) -> c) ->((Mu f a,Mu f b) -> d) ->(Mu f a,Mu f b) -> dpzipWith f g h (x,y) = maybe (h (x,y))(f . fmap g (pzipWith f g h))(fzip (out x , out y))The expression pzipWith inn has type ((a,b) -> c) -> ((Mu f a,Mu f b) ->Mu f c) -> (Mu f a,Mu f b) -> Mu f c, and is the natural generalisation of Has-kell's function zipWith. Function pzipWith can be used to implement a functionwith the same (lazy) behaviour as Haskell's zip for arbitrary datatypes.Function matchFunction match takes a value of a datatype Mu f a and a value of the same datatypeextended with a variable Mu (() + f), and returns a boolean denoting whether ornot the second value matches the �rst value. The subfunctor () denotes the variable.A variable matches any value, and two values of type Mu f and Mu (() + f) (notthe variable) match if they have the same outermost constructor, and if all of theirchildren match. For example, consider the datatypes Tree a and VarTree a de�nedby data Tree a = Leaf a | Bin (Tree a) (Tree a)data VarTree a = Var | VLeaf a | VBin (VarTree a) (VarTree a)The functors for these datatypes are de�ned byFTree = Par+ Rec� RecFVarTree = () + FTreeFor example, the tree with variables VBin Var (VLeaf 3) matches the tree Bin(Leaf 2) (Leaf 3). Function match is de�ned in terms of a function dist left,which distributes a sum on the left over a product, and a function plus to Sum,which takes a polytypic sum, and returns a value of the Sum type.dist_left :: (a , Sum b c) -> Sum (a,b) (a,c)dist_left (a,Inl x) = Inl (a,x)



dist_left (a,Inr y) = Inr (a,y)polytypic plus_to_Sum :: (f + g) a b -> Sum (f a b) (g a b)= case f of _ -> idwhere matches any functor. Function match �rst determines whether or not itssecond argument is a variable, and returns True if that is the case. If its secondargument is not a variable, function match compares the outermost constructors ofits arguments by means of fzip, applies function match recursively, and checks thatall results of the recursive applications return True.match :: (Mu f a , Mu (() + f) a) -> Boolmatch = const True `junc` fmatch.dist_left.out -*- (plus_to_Sum . out)fmatch :: (f a (Mu f a) , f a (Mu (() + f) a)) -> Boolfmatch = maybe False (and . fl_all . fmap (uncurry (==)) match).fzipwhere uncurry and and are de�ned in Haskell's prelude. Note that the second argu-ment of function match has to be a value of a datatype of which the �rst constructoris a nullary constructor. So, in order to apply match, the order in which the con-structors of a datatype are listed is signi�cant. This is an undesirable situation, andwe will show how to write a position independent de�nition of a function similar tomatch in Section 5.3.4 Haskell's deriving constructIn Haskell there is a possibility to derive some classes for datatypes. For example,writingdata Tree a = Leaf a | Bin (Tree a) (Tree a) deriving Eq, Ordgenerates instances of the class Eq (containing (==) and (/=)), and the class Ord(containing (<), (<=), (>=), (>), max, and min) for the datatype Tree a. Thereare �ve classes that can be derived in Haskell, besides the two classes above: Ix,functions for manipulating array indices, Enum, functions for enumerating values ofa datatype, and Text, functions for printing values of a datatype. The functions inthe derived classes are typical examples of polytypic functions. In fact, one reasonfor developing a language with which polytypic functions can be written was togeneralise the rather ad-hoc deriving construct. All functions in the classes that canbe derived can easily be written as polytypic functions, except for the functions in theclass Text. To be able to write the functions in the class Text as polytypic functionswe have to introduce a separate built-in function that gives access to constructor



names. In this subsection we will de�ne the polytypic versions of functions (==),written (!==!), and (<=), written (!<=!), by means of which all functions in theclasses Eq and Ord are de�ned. Furthermore, we will give the function with whichvalues of a datatype can be printed. The de�nitions of the polytypic versions of thefunctions in the other classes that can be derived can be found in Polyp's libraries.Function (!==!)Equality on datatypes is de�ned as follows. Function (!==!) zips its arguments,
attens the result to a list of pairs, and checks that each pair of values in this listconsists of equal values. The arguments have equal shape if pzip returns a value ofthe form Just z for some z, and the arguments have equal contents if all pairs inthe list of pairs we obtain by 
attening z consist of equal elements.(!==!) :: Eq a => Mu f a -> Mu f a -> Boolx !==! y = maybe False(all (uncurry (==)) . flatten)(pzip (x,y))Exercise De�ne function !==! by means of function pzipWith. (end of exercise)Function (!<=!)The de�nition of function (!<=!) is more complicated than the de�nition of function(!==!). The Haskell report de�nes x <= y for an arbitrary datatype as follows:the outermost constructor of x appears earlier in the datatype de�nition than theoutermost constructor of y, or x and y have the same outermost constructor, andthe children of x are lexicographically smaller than or equal to (under the ordering(<=)) the children of y. This implies that we need to be able to obtain the position ofa constructor in its datatype de�nition. For this purpose we introduce the polytypicfunction fcnumber, which given a value of type f a b (usually obtained by meansof function out, so the b is often Mu f a), returns the position of the constructor inthe de�nition of the datatype corresponding to Mu f a.polytypic fcnumber :: f a b -> Int= case f off + g -> fcnumber `junc` ((1+) . fcnumber)_ -> const 0Here we use the fact that + is right-associative. Function (!<=!) is now de�ned asfollows. It �rst fzips its arguments. If the arguments cannot be fzipped (i.e., fzipreturns Nothing), function order determines which of the arguments comes �rst inthe de�nition of the datatype, and returns LT, EQ, or GT accordingly. If the argumentsto (!<=!) can be fzipped, functions order and (!<=!) are applied recursively, andthe results are combined by 
atting the result, and folding from left to right untilwe encounter a value unequal to EQ.



data Ordering = LT | EQ | GT(!<=!) :: Ord a => Mu f a -> Mu f a -> Orderingx !<=! y = maybe (order (fcnumber (out x) , fcnumber (out y)))(foldr op EQ.fl_all.fmap order (uncurry (!<=!)))(fzip (out x , out y))where order (x,y) | x < y = LT| x == y = EQ| x > y = GTop EQ y = yop x y = xThe class TextThe class Text contains functions for printing values of a datatype. To be able tode�ne the functions in the class Text as polytypic functions, we have to introducea separate built-in function that gives access to constructor names. This function iscalled fconstructor name, and it is used in function constructor name.fconstructor_name :: f a b -> Stringconstructor_name :: Mu f a -> Stringconstructor_name = fconstructor_name . outFor example, constructor name (Cons 1 Nil) equals "Cons". We will use thisfunction in Section 5 for a function that behaves di�erently for di�erent constructornames.4 Parametricity for polytypic functionsIn `Theorems for free!' [44], Wadler shows how the parametricity theorem [37] canbe used to construct `free theorems' for polymorphic functions. This free theorem isobtained by just looking at the type of the function. For example, function head oftype [a] -> a satis�es the theorem:head . map f = f . headfor all strict functions f. And function length of type [a] -> Int satis�es thetheorem: length = length . map ffor all functions f. These theorems can be constructed automatically from the typeof a function. Some free theorems have proven to be very useful in transforming



programs, such as for example the fusion law [28], the free theorem of functionfoldr, and the acid-rain theorem [43].In this paper we have generalised function length to the function size of type Mu fa -> Int. From the type of function size we can derive the following free theorem:size = size . pmap fwhere pmap is the map of type (a -> b) -> Mu f a -> Mu f b. This theorem holdsfor any f that describes the structure of a regular datatype, and some examples ofdatatypes on which this theorem holds are the datatype of lists and trees. So thelaw for function length given above is an instance of the law for size. Thus weobtain theorems for free for free: the above free theorem generates theorems for freein Wadler's sense.In this subsection we will describe how to obtain a theorem for free for a polytypicfunction, for references to proofs of parametricity, see [7].4.1 Parametricity explainedThe key to deriving theorems from types is to read types as relations. This sectionoutlines the essential ideas, and closely follows Wadler's [44] approach. We assumea basic knowledge of Wadler's paper, and we assume the same restrictions as inWadler's paper. We will use an informal Haskell like notation for relations and sets.Theorems for free are obtained using the following theorem.Theorem (Parametricity). If t is a closed term of type F , then (t; t) 2 �, where �is the relation corresponding to the type F .To use the parametricity theorem we have to explain how to obtain the relationcorresponding to a type. For this purpose, we introduce some notation for relations,and we explain how to translate the types used in our programs into relations.If a and b are sets, we write r :: a <-> b to indicate that r is a relation betweena and b. We will often represent r by a function of type (a,b) -> Bool whichreturns True if and only if the pair of arguments is related by r. An example ofa relation is the identity relation id a :: a <-> a de�ned by id a (x,y) = x ==y. If a relation binds at most one value of type b to any value of type a, it can berepresented by a function of type a -> b.Our type language consists of constant types such as Bool and Int, and of threetype constructors: functor types f a b, where f is a functor, function types a -> b,and polymorphic types 8 a . t(a), where t is a function that given a type returnsa type (the 8 is usually not visible in our programs). We translate each of thesecategories of types into relations.Constant types as relationsConstant types such as Bool and Int, may simply be read as identity relations:id Bool :: Bool <-> Bool, and id Int :: Int <-> Int.



Functor types as relationsThe function relate functor takes two relations r :: a <-> a' and s :: b <->b', and two values of a functor type x :: f a b and y :: f a' b' and determineswhether or not x and y are related. x and y are related if they have the same structure(so fzip (x,y) does not return Nothing), and if the arguments at the parameterpositions are related by r, and the arguments at the recursive positions are relatedby s.relate_functor :: ((a,a') -> Bool) -> ((b,b') -> Bool) ->(f a b , f a' b') -> Boolrelate_functor r s = maybe False(and . fl_all . fmap r s).fzipNote that only values of functor types with equal functors can be related to eachother; it is for example impossible to relate a sum type with a product type.In the special case where r and s are functions of type a -> a' and b -> b',respectively, relate functor can be de�ned as a function of type f a b -> f a'b'. relate_functor :: (a -> a') -> (b -> b') -> f a b -> f a' b'relate_functor r s = fmap r sFunction types as relationsFunctions are related if they take related arguments into related results. The functionrelate function takes two relations r :: a <-> a' and s :: b <-> b', and twovalues of a function type f :: a -> b and f' :: a' -> b' and determines whetheror not f and f' are related. f and f' are related if and only if for all pairs (x,x')related by r, the pairs (f x,f' x') are related by s.relate_function :: ((a,a') -> Bool) -> ((b,b') -> Bool) ->(a -> b , a' -> b') -> Boolrelate_function r s (f,f') =and [s (f x , f' x') | x <- a, x' <- a', r (x,x')]where we informally assume that a and a' are (possibly in�nite) sets.In the special case where r and s are functions, the relation relate function rs need not necessarily be a function of type (a -> b) -> (a' -> b'), but in thiscase we haverelate_function :: Eq b' => (a -> a') -> (b -> b') ->(a -> b , a' -> b') -> Boolrelate_function r s (f,f') = and [s (f x) == f' (r x) | x <- a]



Forall types as relationsPolymorphic functions are related if they take related types into related results.Let r(s) be a relation depending on relation s. Then r corresponds to a functionfrom relations to relations, such that for every relation t :: a <-> a' there is acorresponding relation r(t) :: v(a) <-> v'(a'). The relation 8 s . r(s) :: 8a . v(a) <-> 8 a' . v'(a') is now de�ned byrelate_forall :: ((a <-> a') -> (v(a) <-> v'(a')) ->(v(a) , v'(a')) -> Boolrelate_forall r (g,g') = and [ r(s) (g,g') | s <- (a <-> a')]This de�nition should be read as: for all relations s :: a <-> a', r(s) relates gand g'.The parametricity theorem requires the construction of the relation correspondingto a type. This relation is obtained by recursively applying the relate functionsde�ned in this section to a given type. We will give two examples in the followingsection.4.2 Parametricity appliedIn this section we give two examples of how to obtain free theorems for polytypicfunctions by hand. Free theorems can be derived automatically, see Fegaras andSheard [9] for a function that given a type constructs its free theorem.The free theorem for function sizeFunction size takes a value v of datatype Mu f a, and returns the number of oc-currences of values of type a in v.size :: 8 a . Mu f a -> IntParametricity ensures that (size,size) is an element of the relation correspondingto 8 a . Mu f a -> Int. The relation corresponding to this type is obtained byrecursively applying the relate functions:relate_forall (relate_function (relate_functor (Mu f a)) id_Int)If we apply this function to the pair of functions (size,size), the de�nition ofrelate forall says that we have to show that for all relations r :: a <-> a', wehaverelate_function (relate_functor (Mu f r)) id_Int (size,size)If we assume that r :: a -> a' is a function, then relate functor (Mu f r) is afunction, namely the fmap on Mu f a: map r. Since in this case both arguments torelate function are functions, we obtain by de�nition of relate function thatthe above expression is equal to:



and [ id_Int (size x) == size (map r x) | x <- a]Since id Int is the identity, this is equivalent to:and [ size x == size (map r x) | x <- a]or, removing the informal list-comprehension notation, for all functions r :: a ->a', and for all x in a, size x == size (map r x)So �rst mapping a function r and then computing the size gives the same result asimmediately computing the size: mapping a function over a value does not changeits size.The free theorem for function cataFunction cata has the following type:8a . 8b . (f a b -> b) -> Mu f a -> bParametricity ensures that the pair (cata,cata) is an element of the relation corre-sponding to this type. To obtain this relation, we again apply the relate functionsrecursively.relate_forall(relate_forall(relate_function(relate_function (relate_functor (f a b)) b)(relate_function (relate_functor (Mu f a)) b)))If we apply this function to the pair of functions cata, the de�nition of the relationrelate forall says that we have to show that for all relations r :: a <-> a' ands :: b <-> b' we have:relate_function(relate_function (relate_functor (f r s)) s)(relate_function (relate_functor (Mu f r)) s)(cata,cata)In the special case where r and s are functions, we have that relate functor (f rs) is the function fmap r s, and relate functor (Mu f r) is the function map r.relate_function(relate_function (fmap r s) s)(relate_function (map r) s)(cata,cata)



By de�nition of relate function, this is equivalent to: for all (f,f') related byrelate function (fmap r s) s:relate_function (map r) s (cata f , cata f')Since map r and s are functions, this is equivalent to: for all x,s (cata f x) == cata f' (map r x)This equality holds provided the pair of functions (f,f') is related by the relationrelate function (fmap r s) s, which, because fmap r s and s are functions, isequivalent to: for all y,s (f y) == f' (fmap r s y)Concluding, we have found that:s (f y) == f' (fmap r s y) ) s (cata f x) == cata f' (map r x)The fusion law given in Section 2.4 is an instance of this free theorem: instantiatethe theorem with the functor for lists, and with r the identity function.Exercise Give the free theorem for functions flatten and pzip. (end of exercise)Very likely the results of this section can be extended in the sense that for examplecatamorphisms on di�erent datatypes can be related, but the precise details are notclear to us.5 Polytypic uni�cationUnifying two expressions that may contain variables amounts to �nding expressionsto substitute for the variables such that the two expressions are equal after per-forming the substitution. Use of uni�cation is widespread, such as in type inferencealgorithms, rewriting systems, compilers, etc. [25]. The datatypes of the expressionsto be uni�ed in the di�erent examples are all di�erent, so a polytypic uni�cationfunction is desirable. This section describes a polytypic uni�cation algorithm.As an example application of uni�cation, consider the two expressions f(x; f(a; b))and f(g(y; a); y), where x and y are variables and f , g, a and b are constants. Sinceboth expressions have an f on the outermost level, these expressions can be uni�edif x and g(y; a) can be uni�ed, and if f(a; b) and y can be uni�ed. The substitutionfx 7! g(y; a); y 7! f(a; b)g uni�es these two pairs of expressions. The original pairof expressions is uni�ed by applying the substitution twice (we have to apply thesubstitution twice because variable y occurs in the expression substituted for x),giving the uni�ed expression f(g(f(a; b); a); f(a; b)).



Uni�cation fails if its arguments have di�erent outermost constructors or constants.Unifying x with f(x) will give the substitution fx 7! f(x)g, which cannot be usedto make two expressions equal by means of a �nite number of applications. Ouruni�cation program does not fail in this case, but it is easy to extend it with afunction that determines whether or not a substitution is cyclic.5.1 De�nitions and outline of the algorithmFunction unify takes a pair of values of type Mu f a, and returns either Nothing ifthe pair of values is not uni�able, or it returns Just s where s is a substitution thatuni�es the pair of values. In case the pair of values does not contain variables, func-tion unify behaves exactly as the equality function, returning Just s, where s isthe empty substitution, if and only if the the argument values are equal. Uni�cationis de�ned on all datatypes Mu f a, and it assumes that variables are integers pre-ceded by a constructor the name of which starts with the string "Var". An exampledatatype on which we might want to use uni�cation isdata Type a = VarType Int | ConType a (List (Type a))Function checkVar determines whether or not a value is a variable. If its argumentis a variable Var i (where the constructor Var may be followed by a string, forexample Type), function checkVar returns Just i, otherwise it returns Nothing.checkVar :: Mu f a -> Maybe IntcheckVar = fcheckVar . outfcheckVar :: f a b -> Maybe IntfcheckVar t = if "Var" == take 3 (fconstructor_name t)then Just (fgetVar t)else Nothingpolytypic fgetVar :: f a b -> Int= case f off + g -> fgetVar `junc` fgetVarCon Int -> id_ -> undefinedFunction vars takes a value, and returns a list containing all variables that occur inthe value.vars :: Mu f a -> [Int]vars = cata fvarswhere fvars x = maybe (concat (fl_right x)) (:[]) (fcheckVar x)A substitution is a function fromvariables to expressions. We represent a substitutionby an association array:



type Subst f a = Array Int (Maybe (Mu f a))start_subst bounds = array bounds(map (:= Nothing) (range bounds))addbind (i,t) arr = arr//[(i:=Just t)]lookup i s = s!iA uni�er of a pair of expressions is a substitution that makes the two expressionsequal. A substitution s is at least as general as t if and only if t can be factored bys, i.e. there exists a substitution r such that t = r . s, where we treat substitutionsas functions. We want to de�ne a function that given a pair of expressions �nds themost general substitution that uni�es the pair, or, if it is not uni�able, reports anerror.Exercise De�ne functionsubst :: Subst f a -> Mu f a -> Mu f a(end of exercise)A pair of expressions has one of the following four forms. For each form we describehow uni�cation proceeds.{ A pair of equal variables. A variable is trivially uni�able with itself.{ A pair of expressions. To unify two expressions we �rst check that their outermostconstructors are equal, and subsequently that all children are pairwise uni�able.{ A pair of a variable and an expression (which may be a variable di�erent from the�rst variable). To unify a variable with a expression we include the associationof the variable with the expression in the substitution. If there already exists anassociation for the variable, the old and new association have to be uni�ed.{ A pair of an expression and a variable. To unify an expression with a variablewe apply the previous case with the arguments swapped.Only the second case refers to the structure of expressions, the implementation ofthe other cases is immediate.5.2 Function unifyFunction unify takes a pair of expressions, and returns its most general uni�er. Itis de�ned in expressions of function unify', which incrementally computes the sub-stitution, and corresponding functions unifyList and unifyList' for a list of pairsof expressions. Function unifyList starts with the start substitution, and computesthe contribution of each pair of expressions to the substitution. It uses functionmfoldl, the monadic version of function foldl, to thread occurrences of Nothingthrough the computation, and function varbounds, to determine the bounds of thesubstitution array by computing the minimum and maximum variable number.



mfoldl :: (b -> a -> Maybe b) -> b -> [a] -> Maybe bmfoldl f e = foldl f' (resultM e)where f' mb a = mb >>= \b -> f b avarbounds :: [(Mu f a , Mu f a)] -> (Int,Int)varbounds ts = let v = concat (map (\(x,y) -> vars x++vars y) ts)in (minimum v,maximum v)unify :: Eq a => (Mu f a , Mu f a) -> Maybe (Subst f a)unify p = unifyList [p]unifyList xs = unifyList' (start_subst (varbounds xs)) xsunifyList' = mfoldl unify'Note that function varbounds assumes that each of its argument rewriting rulescontains at least one variable; it is easy to adjust varbounds such that it also worksfor rewriting rules with no variables. The main uni�cation engine is unify' whichimplements the description of the uni�cation algorithm given above. It uses amongstothers function parEq, which checks that all pairs of values occurring at the param-eter position in a value obtained from function fzip consist of equal values, andfunction update, which checks that we do not try to unify a variable with an ex-pression that contains the same variable, and which subsequently adds the bindingof the variable with the expression to the substitution obtained by unifying the oldexpression bound to the variable with the new expression.unify':: Eq a => Subst f a ->(Mu f a , Mu f a) ->Maybe (Subst f a)unify' s (x,y) = uni (checkVar x , checkVar y)whereuni (Just i , Just j ) | i == j = Just suni (Nothing , Nothing) = ((unifyList' s . fl_right)<> checkEq<> fzip) (out x , out y)uni (Just i , _ ) = update s (i,y)uni ( _ , Just j ) = update s (j,x)checkEq r = if parEq r then Just r else NothingparEq :: Eq a => f (a,a) b -> BoolparEq = all (uncurry (==)) . fl_leftupdate :: Eq a => Subst f a -> (Int , Mu f a) -> Maybe (Subst f a)update s (i,t) = case lookup i s ofNothing -> Just (addbind (i,t) s)Just t' -> unify' (addbind (i,t) s) (t,t')



If we want uni�cation to fail in case a variable is bound to an expression that containsthe variable itself, we can add an occurs-check to function update, or we can checkafterwards that the resulting substitution is acyclic.6 Polytypic term rewritingRewriting systems is another area in which polytypic functions are useful. A rewrit-ing system is an algebra together with a set of rewriting rules. In a functional lan-guage, the algebra is represented by a datatype, and the rewriting rules can be rep-resented as a list of pairs of values of the datatype extended with variables. In thissection we will de�ne a function rewrite which takes a set of rewrite rules of somedatatype extended with variables, and a value of the datatype without variables,and rewrites this value by means of the rewriting rules using the parallel-innermoststrategy, until a normal form is reached. We use the parallel-innermost strategy be-cause it is relatively easy to implement function rewrite as an e�cient functionwhen using this strategy. Function rewrite does not check if the rewriting rules inits �rst argument are normalising, so it will not terminate for certain inputs. Theother main function de�ned in this section is a function that determines whether aset of rewriting rules is normalising. This function is based on a well-known methodof recursive path orderings, as developed by Dershowitz on the basis of a theoremof Kruskal, see [24]. The results in this section are for a large part based on resultsfrom Berglund [1], in which more applications of polytypic functions in rewritingsystems can be found.6.1 A function for rewriting termsFunction rewrite takes two arguments with di�erent but related types: a set ofrewrite rules of a datatype extended with variables, and a value of the datatypewithout variables. To express this relation between the types of the arguments wehave to make the presence of variables visible in the type. Let Mu f a be an arbitrarydatatype. Then we can extend this datatype with variables (represented by integers)by adding an extra component to the sum represented by f: Mu (Con Int + f) a.Thus we obtain the following type for rewrite:type MuVar f a = Mu (Con Int + f) atype Rule f a = (MuVar f a , MuVar f a)rewrite :: [Rule f a] -> Mu f a -> Mu f aLater we will convert values of Mu f a to values of type MuVar f a and vice versa.Functions toMuVar and fromMuVar take care of these type conversions. FunctiontoMuvar injects values of an arbitrary datatype into values of the datatype extendedwith variables. The resulting value does not contain variables. Function fromMuVar



translates a variable-free value of the datatype extended with variables to the data-type without variables. This function fails when it is applied to a value that doescontain variables.toMuVar :: Mu f a -> MuVar f atoMuVar = cata ftoMuVarpolytypic ftoMuVar :: f a (MuVar f a) -> MuVar f a= case f of_ -> \x -> inn (Inr x)fromMuVar :: MuVar f a -> Mu f afromMuVar = cata ffromMuVarpolytypic ffromMuVar :: (Con Int + f) a (Mu f a) -> Mu f a= case f of_ -> \(Inr x) -> inn xWewill de�ne function rewrite in a number of stages. The �rst de�nition is a simple,clearly correct but very ine�cient implementation of rewrite. This de�nition willsubsequently be re�ned to a function with better performance.A �rst de�nition of function rewriteFunction rewrite rewrites its second argument with the rules from its �rst argumentuntil it reaches a normal form. So function rewrite is the �xed-point of a functionthat performs a single parallel-innermost rewrite step, function rewrite step. The�xed-point computation is surrounded by type conversions in order to be able toapply the functions for uni�cation given in the previous section.rewrite rs = fromMuVar . rewrite' rs . toMuVarrewrite' rs = fp (rewrite_step rs)fp f x | fx !==! x = x| otherwise = fp f fxwhere fx = f xrewrite_step :: [Rule f a] -> MuVar f a -> MuVar f aFunction rewrite step is the main rewriting engine. Given a set of rules and avalue x, it tries to rewrite all innermost redeces of x. This is achieved by applyingrewrite step recursively to x, and only rewriting the innermost redeces. At eachrecursive application function rewrite step applies a function innermost. Functioninnermost determines whether or not one of the children has been rewritten. Only ifthis is not the case, it tries to reduce its argument. To determine whether or not one



of the children has been rewritten, function innermost compares ist argument withthe original argument of function rewrite step. The recursive structure of functionrewrite step is that of a cata, but it needs access to the original argument too.Such functions are called paramorphisms [30].para :: (f a b -> Mu f a -> b) -> Mu f a -> bpara h x = h (fmap id (para h) (out x)) xrewrite_step rs = para (innermost rs)innermost :: Eq a => [Rule f a] -> (Con Int + f) a (MuVar f a) ->MuVar f a -> MuVar f ainnermost rs x' x =if (inn x') !/=! x then inn x' else reduce rs xreduce :: Eq a => [Rule f a] -> MuVar f a -> MuVar f areduce [] t = treduce ((lhs,rhs):rs) t = case unify (lhs,t) ofJust s -> subst s rhsNothing -> reduce rs tFunction rewrite is extremely ine�cient. For example, if we represent natural num-bers with Succ and Zero, and we use the rewriting rules for Zero, Succ, :+:, and:*: given in the introduction, it takes hundreds of millions of (Gofer) reductionsto rewrite the representation of 28 to the representation of 256. One reason whyrewrite is ine�cient is that in each application of function rewrite step the ar-gument is traversed top-down to �nd the innermost redeces. Another reason is thatfunction rewrite step performs a lot of expensive comparisons.Exercise De�ne a function rewrite that rewrites a term using the leftmost-inner-most rewriting strategy. The only function that has to be rewritten is functioninnermost:innermost rs x' x = if (inn x') !/=! x then ... else reduce rs xwhere the ... should be completed. The main idea here is to fzip x' and out x,and to use polytypic functions changed and left of typepolytypic changed :: f (a,a) (b,b) -> Boolpolytypic left :: f (a,a) (b,b) -> f a bto obtain the leftmost-innermost reduced term. (end of exercise)Avoiding unnecessary top-down traversals and comparisonsWe want to obtain a function that rewrites a term in time proportional to the



number of steps needed to rewrite the term. As a �rst step towards such a function,we replace the �xed-point computation by a double recursion. The double recursionavoids the unnecessary top-down traversals in search for the innermost redeces. Theidea is to �rst recursively rewrite the children of the argument to normal form, andonly then rewrite the argument itself.For con
uent and normalising term rewriting systems we have that �rst applyingrewrite' to the subterms of the argument, and subsequently to the argument itself,gives the same result as applying function rewrite' to the argument itself.rewrite' rs (inn x) = rewrite' rs (inn (fmap id (rewrite' rs) x))It follows that function rewrite' can be written as a catamorphism, which usesfunction rewrite' in the recursive step. This version of function rewrite is calledrewritec.rewritec rs = cata frewritewhere frewrite x = rewrite' rs (inn x)Observe that in the recursive step, all subexpressions are in normal form. It followsthat the only possible term that can be rewritten is the argument inn x. If inn xis a redex, then it is rewritten, and we proceed with rewriting the result. If inn xis not a redex, then inn x is in normal form. We adjust function reduce such thatit returns Nothing if it does not succeed in rewriting its argument, and Just x if itdoes succeed with x.rewritec rs = cata frewritewherefrewrite x = maybe (inn x) (rewritec rs) (reduce rs (inn x))reduce :: Eq a => [Rule f a] -> MuVar f a -> Maybe (MuVar f a)reduce [] t = Nothingreduce ((lhs,rhs):rs) t = case unify (lhs, t) ofJust s -> Just (subst s rhs)Nothing -> reduce rs tThis function rewrites 28 much faster than the �rst de�nition of function rewrite,but it is still far from linear in the number of rewrite steps.E�cient rewritingA source of ine�ciency in function rewritec is the occurrence of function rewritecin frewrite. If reduce rs (inn x) returns some expression Just e, rewritec rsis applied to e. When evaluating the expression rewritec rs e the whole expressione is traversed to �nd the innermost redeces, including all subterms which are knownto be in normal form. For example, consider the expression 100 :*: 2, where 2 and100 abbreviate their equivalents written with Succ and Zero. Applying the second



rule for :*:, this term is reduced to (100 :*: 1) :+: 100. Now, rewritec rs willtraverse both subexpressions 100, and �nd that they are in normal form, which wealready knew. To avoid these unnecessary traversals, function rewritec is rewrittenas follows. Instead of applying rewritec rs recursively to the reduced expression,we apply a similar function recursively to the right-hand side of the rule with whichthe expression is reduced. This avoids recursing over the expressions substitutedfor the variables in this rule, which are known to be in normal form. To de�ne thisfunction we use the polytypic version of function zipWith, called pzipWith. FunctionpzipWith is used in the de�nition of frewrite to zip the right-hand side of a rulewith the expression obtained by substituting the appropriate expressions for thevariables in this rule. This means that in case pzipWith encounters two argumentswith a di�erent outermost constructor, the left argument is a variable, and the rightargument is an expression in normal form substituted for the variable. In that casewe return the second argument. In case pzipWith encounters two arguments withthe same outermost constructor, it tries to rewrite the zipped expression.rewritec rs = cata frewritewhere frewrite x = maybe (inn x) just (reduce rs (inn x))just = pzipWith frewrite fst sndreduce :: Eq a =>[Rule f a] -> MuVar f a -> Maybe (MuVar f a,MuVar f a)reduce [] t = Nothingreduce ((lhs,rhs):rs) t = case unify (lhs,t) ofJust s -> Just (rhs,subst s rhs)Nothing -> reduce rs tSince the argument t of reduce does not contain variables, t does not contribute tobounds of the substitution array, and function reduce can be optimised as follows:reduce [] t = Nothingreduce ((lhs,rhs):rs) t = case unifyList' start [(lhs,t)] ofJust s -> Just (rhs,subst s rhs)Nothing -> reduce rs twhere start = listArray (varbounds lhs) (repeat Nothing)varbounds l = (minimum v,maximum v) where v = vars lThe resulting rewrite function is linear in the number of reduction steps needed torewrite a term to normal form. It rewrites the representation of 28 into the represen-tation of 256 with the rules given for Zero, Succ, :+:, and :*: in the introductionabout 500 times faster than the original speci�cation of function rewrite. This func-tion can be further optimised by partially evaluating with respect to the rules; weomit these optimisations.



6.2 Normalising sets of rewriting rulesTermination of function rewrite can only be guaranteed if its argument rules arenormalising.A set of rules is normalising if all terms are rewritten to normal form (i.e.cannot be rewritten anymore) in a �nite number of steps. It is undecidable whetheror not a set of rewriting rules is normalising (unless all rules do not contain variables),but there exist several techniques that manage to prove normalising property for alarge class of normalising rewriting rules. A technique that works in many cases isthe method based on a well-known method of recursive path orderings, as developedby Dershowitz on the basis of a theorem of Kruskal, see [24]. In this section we willde�ne a function normalise based on this technique.normalise :: Eq a => [Rule f a] -> BoolNote that if function normalise returns False for a given set of rules this does notnecessarily mean that the rules are not normalising, it only means that functionnormalise did not succeed in constructing a witness for the normalising propertyof the rules.The recursive path orderingsThe recursive path orderings technique for proving the normalising property is rathercomplicated; it is based on a deep theorem from Kruskal. In this section we will seethe technique in action; see [24] for the theory behind this technique.A set of rules of type [Rule f a] is normalising according to the recursive pathorderings technique if we can �nd an ordering on the constructors of the datatypeMuVar f a such that each left-hand side of a rule can be rewritten into its right-handside using a set of four special rules. These rules will be illustrated with the rewritingrules for Zero, Succ, Add and Mul given in the introduction:Var 1 :++: VZero -> Var 1Var 1 :++: VSucc (Var 2) -> VSucc (Var 1 :++: Var 2)Var 1 :**: VZero -> VZeroVar 1 :**: VSucc (Var 2) -> (Var 1 :**: Var 2) :++: Var 1We assume that the constructors of the datatype VNumber are ordered by Var <VZero < VSucc < :++: < :**:. The four rewriting rules with which left-hand sideshave to be rewritten into right-hand sides are the following:{ Place a mark on top of a term. A mark is denoted by an exclamation mark !.{ A marked value x with outermost constructor c may be replaced by a value withoutermost constructor c' < c, and with marked x's occurring at the recursivechild positions of c'. For example, suppose y equals !(Var 1 :++: VSucc (Var2)), then y -> VSucc y, since VSucc < :++:.



{ Amark on a value xmay be passed on to zero or more children of x. For example,the mark on y in the above example may be passed on to the subexpressionVSucc (Var 2), so !(Var 1 :++: VSucc (Var 2)) -> Var 1 :++: !(VSucc(Var 2)).{ A marked value may be replaced by one of its children occurring at the recursivepositions. For example, !(VSucc (Var 2)) -> Var 2.Each of the right-hand sides of the rules for rewriting numbers can be rewritten toits left-hand side using these rules. For example,Var 1 :**: VSucc (Var 2)-> { Rule 1 }!(Var 1 :**: VSucc (Var 2))-> { Rule 2 }!(Var 1 :**: VSucc (Var 2)) :++: !(Var 1 :**: VSucc (Var 2))-> { Rule 4 }!(Var 1 :**: VSucc (Var 2)) :++: Var 1-> { Rule 3 }(Var 1 :**: !(VSucc (Var 2))) :++: Var 1-> { Rule 4 }(Var 1 :**: Var 2) :++: Var 1It follows that the set of rules for rewriting numbers is normalising.Exercise Rewrite the left-hand sides into their corresponding right-hand sides forthe other rules for rewriting numbers using the four special rewrite rules. (end ofexercise)Exercise Show that the following set of rewrite rules is normalising using the re-cursive path orderings technique.: (: x) ! x: (x _ y) ! : x ^ : yx ^ (y _ z) ! (x ^ y) _ (x ^ z)(x _ y) ^ z ! (x ^ z) _ (y ^ z)(end of exercise)Function normaliseA naive implementation of a function normalise that implements the recursivepath orderings technique computes all possible orderings on the constructors, andtests for each ordering whether or not each left-hand side can be rewritten to itscorresponding left-hand side using the four special rules. If it succeeds with one ofthe orderings, the set of rewriting rules is normalising. Since the four special rulesthemselves are not normalising this test may not terminate. To obtain a terminatingfunction normalise, we implement a restricted version of the four special rules.



Thus, function normalise does not fully implement the recursive path orderingstechnique, but it still manages to prove the normalising property for a large class ofsets of rewriting rules.normalise rules = or [all (l_to_r ord) rules | ord <- allords]allords :: [Mu f a -> Int]l_to_r :: Eq a => (Mu f a -> Int) -> (Mu f a,Mu f a) -> BoolFunction allords generates all orderings, where an ordering is a function that givena value of the datatype returns an integer. Function l to r implements a restrictedversion of the four special rewrite rules.Function allords is de�ned by means of two functions: function perms, which com-putes all permutations of a list, and function fconstructors which returns a rep-resenation of the list of all constructors of a datatype. The de�nition of functionperms is omitted.polytypic fconstructors :: [f a b]= case f off + g -> [Inl x | x <- fconstructors] ++[Inr y | y <- fconstructors]_ -> [undefined]allords = map make_ord (perms fconstructors)where make_ord l x = index (fcnumber (out x)) (map fcnumber l)index n (m:ms) | n == m = 0| otherwise = 1 + index n msindex n [] = error "no index in list"Exercise A straightforward optimisation of function normalise is obtained by onlygenerating those orderings that do not immediately fail given the argument rules.For example, any ordering on VNumber with :**: < :++: will immediately fail onaccount of the fourth rewriting rule, which requires :++: < :**:. De�ne a functionthat takes a set of rules and generates all orderings that are not immediately ruledout on account of those rules. (end of exercise)Finally, we have to implement function l to r. Given an ordering and a rewritingrule (l,r), function l to r tries to rewrite l into r. Distinguish the following threecases:{ The outermost constructor of the right-hand side, ocr, is larger than the out-ermost constructor of the left-hand side, ocl, under the given ordering. In thiscase it is impossible to rewrite l into r, and function l to r returns False.{ ocr is smaller than ocl under the given ordering. In this case, function l to rcomputes the recursive components of the right-hand side. If there are no such,



it checks that the right-hand side itself is a subexpression of the left-hand side.If there are recursive components, function l to r checks that all of these aresubexpressions of the left-hand side. For this purpose we de�ne function subexpr,which takes two arguments, and determines whether or not the second argumentis a subexpression of the �rst argument. A subexpression of x does not have tobe a consecutive part of x, for example, the tree Bin (Leaf 3) (Leaf 2) is asubexpression of the tree Bin (Bin (Leaf 3) (Leaf 4)) (Leaf 2). On lists,subexpressions are usually called subsequences.subexpr :: Eq a => Mu f a -> Mu f a -> Boolsubexpr l r =pzipWith (and . fl_all)(uncurry (==))(\(x,y) -> (any (`subexpr` y) . fl_right . out) x)(l,r){ The outermost constructors are equal under the given ordering. In this case,function l to r fzips the children of the left-hand side and the right-hand side.It checks that all pairs of values appearing at the parameter position consist ofequal values, and it checks that there exists at least one recursive position pair.Furthermore, for each pair of values (l,r) appearing at a recursive position,l to r ord (l,r) has to hold.We obtain the following de�nition of function l to r.l_to_r ord (l,r)| ocl < ocr = False| ocl > ocr = let x = fl_right (out r) inif null x then subexpr l r else all (subexpr l) x| ocl == ocr =maybe undefined(\x -> parEq x && all' (l_to_r ord) (fl_right x))(fzip (out l , out r))where ocl = ord locr = ord rall' p [] = Falseall' p xs = all p xswhere function parEq is de�ned in Section 5.7 Conclusions and future workThis paper introduces polytypic programming: programming with polytypic func-tions. Polytypic functions are useful in applications where programs are datatype
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