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Abstract. Generic Programming deals with the construction of pro-
grams that can be applied to many different datatypes. This is achieved
by parameterizing the generic programs by the structure of the datatypes
on which they are to be applied. Programs that can be defined generi-
cally range from simple map functions through pretty printers to complex
XML tools.

The design space of generic programming languages is largely unex-
plored, partly due to the time and effort required to implement such
a language. In this paper we show how to write flexible prototype imple-
mentations of two existing generic programming languages, PolyP and
Generic Haskell, using Template Haskell, an extension to Haskell that
enables compile-time meta-programming. In doing this we also gain a
better understanding of the differences and similarities between the two
languages.

1 Introduction

Generic functional programming [9] aims to ease the burden of the programmer
by allowing common functions to be defined once and for all, instead of once
for each datatype. Classic examples are small functions like maps and folds [§],
but also more complex functions, like parsers and pretty printers [11] and tools
for editing and compressing XML documents [5], can be defined generically.
There exist a number of languages for writing generic functional programs [1, 3,
6,7,10,12,13], each of which has its strengths and weaknesses, and researchers
in generic programming are still searching for The Right Way. Implementing a
generic programming language is no small task, which makes it cumbersome to
experiment with new designs.

In this paper we show how to use Template Haskell [16] to implement two
generic programming extensions to Haskell: PolyP [10,15] and Generic Haskell [6].
With this approach, generic functions are written in Haskell (with the Template
Haskell extension), so there is no need for an external tool. Furthermore the
support for code generation and manipulation in Template Haskell greatly sim-
plifies the compilation of generic functions, thus making the implementations
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very lightweight and easy to experiment with. Disadvantages of this approach
are that we do not get the nice syntax we can get with a custom made parser
and because we have not implemented a type system, generic functions are only
type checked at instantiation time.

The rest of this section gives a brief introduction to Template Haskell, PolyP
and Generic Haskell (GH). Section 2 compares PolyP and GH. Section 3 intro-
duces the concepts involved in implementing generic programming using Tem-
plate Haskell. Sections 4 and 5 outline the implementations of PolyP and GH
and Section 6 points to possible future work.

1.1 Template Haskell

Template Haskell [16] is a language extension implemented in the Glasgow
Haskell Compiler that enables compile-time meta-programming. This means that
we can define code generating functions that are run at compile-time. In short
you can splice abstract syntax into your program using the $(...) notation and
lift an expression to the abstract syntax level using the quasi-quotes [|...1].
Splices and quasi-quotes can be nested arbitrarily deep. For example, it is pos-
sible to define the printf function with the following type:

printf :: String -> Q Exp

Here printf takes the format string as an argument and produces the abstract
syntax for the printf function specialized to that particular format string. To
use this function we can write, for instance

Main> $(printf "Hello %s, number 7%d!") "World" 100
"Hello World, number 100!"

Template Haskell comes with libraries for manipulating the abstract syntax of
Haskell. The result type Q Exp of the printf function models the abstract syntax
of an expression. The type constructor Q is the quotation monad, that takes care
of, for instance, fresh name generation and the Exp type is a normal Haskell
datatype modeling Haskell expressions. Similar types exist for declarations (Dec)
and types (Type). The quotation monad is built on top of the I0 monad, so if we
want to escape it we have to use the function unsafePerformI0 :: I0 a -> a.

The definition of printf might look a bit complicated with all the lifts and
splices, but ignoring those we have precisely what we would have written in an
untyped language.

printf :: String -> Q Exp
printf fmt = prAcc fmt [| "" |]
where
prAcc :: String -> Q Exp -> Q Exp
prAcc fmt r = case fmt of
’%2:°d?:f -> [ \n -> $(prAcc £ [| $r ++ show n []) |[]
Woirsrif > [ \s -> $(prAcc £ [| $r ++ s 1) 11
c:f -> prAcc £ [| $r ++ [c] |[]
nn > T



The prAcc function uses an accumulating parameter r containing (the abstract
syntax of) an expression representing the string created so far. Every time we
see a % code we add a lambda at the top level and update the parameter with
the argument.

The keen observer will note that this definition of printf is quadratic in the
length of the format string. This is easy to fix but for the sake of brevity we
chose the inefficient version, which is slightly shorter.

Template Haskell supports program reflection or reification, which means
that it is possible to get hold of the type of a named function or the declaration
that defines a particular entity. For example:

reifyType id :: Q Type
reifyDecl Maybe :: Q Dec

We can use this feature to find the definitions of the datatypes that a generic
function is applied to.

1.2 PolyP

PolyP [10,15] is a language extension to Haskell for generic programming, that
allows generic functions over unary regular datatypes. A regular datatype is a
datatype with no function spaces, no mutual recursion and no nested recursion®.

Examples of unary regular datatypes are [], Maybe and Rose:
data Rose a = Fork a [Rose a]

Generic programming in PolyP is based on the notion of pattern functors.
Each datatype is associated with a pattern functor that describes the structure
of the datatype. The different pattern functors are shown in Figure 1. The (:+:)
pattern functor is used to model multiple constructors, (:*:) and Empty model
the list of arguments to the constructors, Par is a reference to the parameter
type, Rec is a recursive call, (:@:) models an application of another regular
datatype and Const is a constant type. The pattern functors of the datatypes
mentioned above are (the comments show the expanded definitions applied to
two type variables p and r):

type ListF = Empty :+: (Par :*: Rec) -- Either () (p,r)
type MaybeF = Empty :+: Par -- Either O p
type RoseF = Par :x: ([] :@: Rec) -- (p, [rD

PolyP provides two functions inn and out to fold and unfold the top-level
structure of a datatype. Informally, for any regular datatype D with pattern
functor F, inn and out have the following types:

inn :: Fa (Da) ->D a
out :: Da ->Fa (D a)

! The recursive calls must have the same form as the left hand side of the definition.



type (g :+: h) p r = Either (g p r) (h p r)
type (g :#: h) pr=(gpr, hpr

type Empty pr=20

type Par PTr=p

type Rec pr=r

type (d :@: g) pr=d (gpr)

type Const t pr =1t

Fig. 1. Pattern functors

Note that only the top-level structure is folded /unfolded.

A special construct, polytypic, is used to define generic functions over pat-
tern functors by pattern matching on the functor structure. As an example, the
definition of fmap2, a generic map function over pattern functors, is shown in
Figure 2. Together with inn and out these polytypic functions can be used to
define generic functions over regular datatypes. For instance:

pmap :: (a ->b) ->Da ->Db
pmap £ = inn . fmap2 f (pmap f) . out

The same polytypic function can be used to create several different generic func-
tions. We can, for instance, use fmap2 to define generic cata- and anamorphisms
(generalized folds and unfolds):

cata :: (Fab->b) >Da ->b
cata f = £ . fmap2 id (cata f) . out

ana :: (b ->F ab) ->b ->Da
ana f = inn . fmap2 id (ana f) . f

1.3 Generic Haskell

Generic Haskell [2] is an extension to Haskell that allows generic functions over
datatypes of arbitrary kinds. Hinze [4] observed that the type of a generic func-
tion depends on the kind of the datatype it is applied to, hence each generic
function in Generic Haskell comes with a generic (kind indexed) type. The kind
indexed type associated with the generic map function is defined as follows:

Map {[ * 1} st=8->t
Map {[ k -> 1 1} s t = forall a b. Map {[ k ]} a b ->
Map {[ 1 1} (s a) (¢t b)

Generic Haskell uses the funny brackets ({[ 1}) to enclose kind arguments. The
type of the generic map function gmap applied to a type t of kind k can be
expressed as

gmap {| t :: k |} :: Map {[ k ]} t ¢t



polytypic fmap2 :: (a ->c) -=> (b ->d) ->fab->fcd
= \p r -> case f of
g :+: h -> fmap2 p r -+- fmap2 p r
g :*: h -> fmap2 p r -*- fmap2 p r
Empty -> const ()
Par ->p
Rec ->r
d :0: g -> pmap (fmap2 p r)
Const t -> id

(-+-) :: (a->c) -> (b -> d) -> Either a b -> Either c d
(f -+- g) (Left x) = Left (f x)
(f -+- g) (Right y) = Right (g y)

(-*-) :: (a->¢c) -> (b ->d) -> (a,b) -> (c,d)
(f -x- g) (x,y) = (£ x, g y)

Fig. 2. The definition of fmap2 in PolyP

The second type of funny brackets ({| |3}) encloses type arguments. Following
are the types of gmap for some standard datatypes.

gmap {| Bool |} :: Bool -> Bool
gmap {| [1 I} :: forall a b. (a -> b) -> [a]l -> [b]
gmap {| Either |} :: forall a b. (a -> b) ->

forall ¢ 4. (¢ -> d) ->

Either a ¢ -> Either b d

The kind indexed types follow the same pattern for all generic functions. A
generic function applied to a type of kind x — v is a function that takes a
generic function for types of kind x and produces a generic function for the
target type of kind v.

The generic functions in Generic Haskell are defined by pattern matching on
the top-level structure of the type argument. Figure 3 shows the definition of the
generic map function gmap. The structure combinators are similar to those in
PolyP. Sums and products are encoded by :+: and :*: and the empty product
is called Unit. A difference from PolyP is that constructors and record labels are
represented by the structure combinators Con ¢ and Label 1. The arguments
(c and 1) contain information such as the name and fixity of the constructor
or label. A generic function must also contain cases for primitive types such as
Int. The type of the right hand side of each clause is the type of the generic
function instantiated with the structure type on the left. The definitions of the
structure types are shown in Figure 4. Note that the arguments to Con and
Label containing the name and fixity information are only visible in the pattern
matching and not in the actual types.

Generic Haskell contains many features that we do not cover here, such as
type indexed types, generic abstraction and constructor cases.



gmap {| t :: k [} :: Map {[ k ]} t t

gmap {| :+: |} gmapA gmapB (Inl a) = Inl (gmapA a)

gmap {| :+: |} gmapA gmapB (Inr b) = Inr (gmapB b)

gmap {| :*: |} gmapA gmapB (a :*: b) = gmapA a :*: gmapB b
gmap {| Unit [} = id

gmap {| Con ¢ |} gmapA (Con a) = Con  (gmapA a)
gmap {| Label 1 |} gmapA (Label a) = Label (gmapA a)
gmap {| Int |2} = id

Fig. 3. A generic map function in Generic Haskell

data a :+: b Inl a| Inr b

data a :*: b =a :*: b
data Unit = Unit
data Con a = Con a

data Label a = Label a

Fig. 4. Structure types in Generic Haskell

2 Comparing PolyP and Generic Haskell

The most notable difference between PolyP and Generic Haskell is the set of
datatypes available for generic programmers. In PolyP generic functions can only
be defined over unary regular datatypes, while Generic Haskell allows generic
functions over (potentially non-regular) datatypes of arbitrary kinds. There is a
trade-off here, in that more datatypes means fewer generic functions. In PolyP it
is possible to define generic folds and unfolds such as cata and ana that cannot
be defined in Generic Haskell.

Even if PolyP and Generic Haskell may seem very different, their approaches
to generic programming are very similar. In both languages generic functions are
defined, not over the datatypes themselves, but over a structure type acquired
by unfolding the top-level structure of the datatype. The structure types in
PolyP and Generic Haskell are very similar. The differences are that in PolyP
constructors and labels are not recorded explicitly in the structure type and the
structure type is parameterized over recursive occurrences of the datatype. This
is made possible by only allowing regular datatypes. For instance, the structure
of the list datatype in the two languages is (with Generic Haskell’s sums and
products translated into Either, (,) and ()):

type ListF a r = Either O (a, r ) -- PolyP
type ListS a Either (Con ()) (Con (a,[al)) -- GH

To transform a generic function over a structure type into a generic function
over the actual datatype, conversion functions between the datatype and the
structure type are needed. In PolyP they are called inn and out (described
in Section 1.2) and they are primitives in the language. In Generic Haskell this



conversion is done by the compiler and the conversion functions are not available
to the programmer.

As mentioned above, generic functions in both languages are primarily de-
fined over the structure types. This is done by pattern matching on a type code,
representing the structure of the datatype. The type codes differ between the
languages, because they model different sets of datatypes, but the generic func-
tions are defined in very much the same way. The most significant difference
is that in Generic Haskell the translations of type abstraction, type application
and type variables are fixed and cannot be changed by the programmer.

Given a generic function over a structure type it should be possible to con-
struct a generic function over the corresponding datatype. In Generic Haskell this
process is fully automated and hidden from the programmer. In PolyP, however,
it is the programmer’s responsibility to take care of this. One reason for this is
that the structure types are more flexible in PolyP, since they are parameterized
over the recursive occurrences of the datatype. This means that there is not a
unique datatype generic function for each structure type generic function. For
instance the structure type generic function fmap2 from Figure 2 can be used
not only to define the generic map function, pmap, but also the generic cata- and
anamorphisms, cata and ana.

3 Generic Programming in Template Haskell

Generic functions in both PolyP and Generic Haskell are defined by pattern
matching over the code for a datatype. Such a generic function can be viewed
as an algorithm for constructing a Haskell function given a datatype code. For
instance, given the type code for the list datatype a generic map function can
generate the definition of a map function over lists. Program constructing al-
gorithms like this can be implemented nicely in Template Haskell; a generic
function is simply a function from a type code to the abstract syntax for the
function specialized to the corresponding type. When embedding a generic pro-
gramming language like PolyP or Generic Haskell in Template Haskell there are
a few things to consider:

— Datatype codes
The structure of a datatype has to be coded in a suitable way. How this is
done depends, of course, on the set of datatypes to be represented, but we
also have to take into account how the type codes affect the generic function
definitions. Since we are going to pattern match on the type codes we want
them to be as simple as possible.
To avoid having to create the datatype codes by hand we can define a (par-
tial) function from the abstract syntax of a datatype definition to a type
code. The (abstract syntax of the) datatype definition can be acquired using
the reification facilities in Template Haskell.

— Structure types
To avoid having to manipulate datatype elements directly, generic functions
are defined over a structure type, instead of over the datatype itself. The



structure type reveals the top-level structure of the datatype and allows us
to manipulate datatype elements in a uniform way. Both PolyP and Generic
Haskell use a binary sum type to model multiple constructors and a binary
product to model the arguments to the constructors. In this paper we use
Either as the sum type and (,) as the product type.

When applied to the code for a datatype a generic function produces a
function specialized for the structure type of that datatype. This means that
we have to know how to translate between type codes and structure types.
For instance, the type code Par in PolyP is translated to the structure type
with the same name. Note that while there is a unique structure type for
each type code, it is possible for several datatypes to have the same code
(and thus the same structure).

Generic function definitions

A generic function is implemented as a function from a type code to (abstract
syntax for) the specialized version of the function. It might also be necessary
to represent the type of a generic function in some way as we will see when
implementing Generic Haskell in Section 5.

From structure types to datatypes

The generic functions defined as described above produce functions special-
ized for the structure types. What we are interested in, on the other hand,
are specializations for the actual datatypes. As described in Section 2, PolyP
and Generic Haskell take two different approaches to constructing these spe-
cializations. In PolyP it is the responsibility of the user whereas in Generic
Haskell, it is done by the compiler. In any case we need to be able to convert,
between an element of a datatype and an element of the corresponding struc-
ture type. How difficult the conversion functions are to generate depends on
the complexity of the structure types. Both PolyP and Generic Haskell have
quite simple structure types, so the only information we need to generate the
conversion functions is the names and arities of the datatype constructors.
In the approach taken by PolyP, the conversion functions (inn and out)
are all the compiler needs to define. The programmer of a generic function
will then use these to lift her function from the structure type level to the
datatype level. Implementing the Generic Haskell approach on the other
hand requires some more machinery. For each generic function, the compiler
must convert the specialization for a structure type into a function that
operates on the corresponding datatype. In Section 5 we will see how to do
this for Generic Haskell.

Instantiation

Both the PolyP and Generic Haskell compilers do selective specialization,
that is, generic functions are only specialized to the datatypes on which they
are actually used in the program. This requires traversing the entire program
to look for uses of generic functions. When embedding generic programming
in Template Haskell we do not want to analyze the entire program to find
out which specializations to construct. What we can do instead is to in-
line the body of the specialized generic function every time it is used. This
makes the use of the generic functions easy, but special care has to be taken



to avoid that recursive generic functions give rise to infinite specializations.
This is the approach we use when embedding PolyP in Template Haskell
(Section 4). Another option is to require the user to decide which functions
to specialize on which datatypes. This makes it harder on the user, but a
little easier for the implementor of the generic programming language. Since
our focus is on fast prototyping of generic languages, this is the method we
choose when implementing Generic Haskell.

4 PolyP in Template Haskell

Following the guidelines described in Section 3 we can start to implement our
first generic programming language, PolyP.

4.1 Datatype Codes

The first thing to do is to decide on a datatype encoding. In PolyP, generic
functions are defined by pattern matching on a pattern functor, so to get a
faithful implementation of PolyP we should choose the type code to model these
pattern functors.

data Code = Code :+: Code | Code :*: Code | Empty
| Par | Rec | Regular :@: Code | Const Type

This coding corresponds perfectly to the definition of the pattern functors in
Figure 1, we just have to decide what Type and Regular mean. The Template
Haskell libraries define the abstract syntax for Haskell types in a datatype called
Type so this is a natural choice to model types. The model of a regular datatype
should contain a code for the corresponding pattern functor, but it also needs to
contain the constructor names of the regular datatype. This is because we need
to generate the inn and out functions for a regular datatype. Consequently we
choose the following representation of a regular datatype:

type Regular = ([ConName], Code)

To make it easy to get hold of the code for a datatype, we want to define
a function that converts from the (abstract syntax of a) datatype definition to
Regular. A problem with this is that one regular datatype might depend on
another regular datatype, in which case we have to look at the definition of the
second datatype as well. So instead of just taking the definition of the datatype
in question our conversion function takes a list of all definitions that might be
needed together with the name of the type to be coded.

regular :: [Q Dec] -> TypeName -> Regular

Note that if regular fails, which it will if a required datatype definition is missing
or the datatype is not regular, we will get a compile time error, since the function
is executed by the Template Haskell system at compile time.



We can use the function regular to get the code for the Rose datatype
defined in Section 1.2 as follows:

roseD = regular [reifyDecl Rose, reifyDecl []] "Rose"

4.2 Structure Types

The structure type of a regular datatype is a pattern functor. See Section 1.2 and
Figure 1 in particular for their definitions. The mapping between the datatype
codes (Code) and the pattern functors is the obvious one (a type code maps to
the pattern functor with the same name).

4.3 Generic Function Definitions

Generic functions over pattern functors are implemented as functions from type
codes to (abstract) Haskell code. For example, the function fmap2 from Figure 2
in Section 1.2 is implemented as shown in Figure 5. The two definitions are
strikingly similar, but there are a few important differences, the most obvious one
being the splices and quasi-quote brackets introduced in the Template Haskell
definition. Another difference is in the type signature. PolyP has its own type
system capable of expressing the types of generic functions, but in Template
Haskell everything inside quasi-quotes has type Q Exp, and thus the type of
fmap?2 is lost. The third difference is that in Template Haskell we have to pass
the type codes explicitly.

fmap2 :: Code -> Q Exp
fmap2 f =
[l \pr-> $(
case f of

g :+: h -> [| $(fmap2 g) p r -+- $(fmap2 h) p r |]
g :*: h -> [| $(fmap2 g) p r -*- $(fmap2 h) p r |]
Empty -> [l const () 1]
Par -> [l p 1]
Rec -> [l r ]
d :0: g -> [| $(pmap d) ($(fmap2 g) p r) 1]
Const t -> [| id []

Fig. 5. fmap2 in Template Haskell

The (:@:)-case in the definition of fmap2 uses the datatype level function
pmap to map over the regular datatype d. The definition of pmap is described in
Section 4.4.



4.4 From Structure Types to Datatypes

The generic functions described in Section 4.3 are defined over pattern functors,
whereas the functions we are (really) interested in operate on regular datatypes.
Somehow we must bridge this gap. In PolyP these datatype level functions are
defined in terms of the pattern functor functions and the functions inn and out,
that fold and unfold the top-level structure of a datatype. In PolyP, inn and out
are primitive but in our setting they can be treated just like any generic function,
that is, they take a code for a datatype and produce Haskell code. However, the
code for a pattern functor is not sufficient, we also need to know the names of
the constructors of the datatype in order to construct and deconstruct values of
the datatype. This gives us the following types for inn and out.

inn, out :: Regular -> Q Exp

To see what code has to be generated we can look at the definition of inn and
out for lists:

out_List :: [a] -> Either () (a, [al)
out_List = \xs -> case xs of

01 -> Left ()

x:xs -> Right (x,xs)

inn_List :: Either () (a, [a]) -> [al
inn_List = \xs -> case xs of

Left () -> [

Right (x,xs) -> x:xs

Basically we have to generate a case expression with one branch for each con-
structor. In the case of out we match on the constructor and construct a value
of the pattern functor whereas inn matches on the pattern functor and creates
a value of the datatype. Note that the arguments to the constructors are left
untouched, in particular the tail of the list is not unfolded.

With inn and out at our disposal we define the generic map function over
a regular datatype, pmap. The definition is shown in Figure 6 together with the
same definition in PolyP. In PolyP, pmap is a recursive function and we might
be tempted to define it recursively in Template Haskell as well. This is not what
we want, since it would make the generated code infinite, instead we want to
generate a recursive function which we can do using a let binding.

4.5 Instantiation

The generic functions defined in this style are very easy to use. To map a function
f over a rose tree tree we simply write

$(pmap roseD) f tree

where roseD is the representation of the rose tree datatype defined in Section 4.1.



pmap :: Regular d => (a -> b) ->da ->db
pmap f = inn . fmap2 f (pmap f) . out

pmap :: Regular -> Q Exp
pmap d = [| let pmap_d f = $(inn d)
. $(fmap2 $ functor0f d) f (pmap_d f)
. $(out d)
in pmap_d
1]

Fig. 6. The pmap function in PolyP and Template Haskell

5 Generic Haskell in Template Haskell

In Section 4 we outlined an embedding of PolyP into Template Haskell. In this
section we do the same for the core part of Generic Haskell. Features of Generic
Haskell that we do not consider include constructor cases, type indexed types
and generic abstraction. Type indexed types and generic abstraction should be
possible to add without much difficulty; constructor cases might require some
work, though.

5.1 Datatype Codes

To be consistent with how generic functions are defined in Generic Haskell we
choose the following datatype for type codes:

= Sum | Prod | Unit

| Con ConDescr | Label LabelDescr

| Fun | TypeCon TypeName

| App Code Code | Lam VarName Code | Var VarName

data Code

The first seven constructors should be familiar to users of Generic Haskell, al-
though you do not see the TypeCon constructor when matching on a specific
datatype in Generic Haskell. The last three constructors App, Lam and Var you
never see in Generic Haskell. The reason why they are not visible is that the
interpretation of these type codes is hard-wired into Generic Haskell and cannot
be changed by the programmer. By making them explicit we get the opportunity
to experiment with this default interpretation.

The types ConDescr and LabelDescr describe the properties of constructors
and labels. In our implementation this is just the name, but it could also include
information such as fixity and strictness.

If we define the infix application of App to be left associative, we can write
the type code for the list datatype as follows:



listCode = Lam "a"
Sum ‘App¢ (Con "[]1" ‘App¢ Unit)

‘App¢ (Com ":"
‘App¢ (Prod
(4 App < Var |lal|
‘App‘ (Typecon " [] n ‘App‘ Var lla")
)
)

This is not something we want to write by hand for every new datatype, even
though it can be made much nicer by some suitable helper functions. Instead
we define a function that produces a type code given the abstract syntax of a
datatype declaration.

typeCode :: Q Dec -> Code
Thus, to get the above code for the list datatype we just write

typeCode (reifyDecl [1)

5.2 Structure Types

The structure type for a datatype is designed to model the structure of that
datatype in a uniform way. Similarly to PolyP, Generic Haskell uses binary sums
and products to model datatype structures. We diverge from Generic Haskell in
this implementation in that we use the Haskell prelude types Either and (,) for
sums and products instead of defining our own. Another difference between our
Template Haskell implementation and standard Generic Haskell is that construc-
tors and labels are not modeled in the structure type. Compare, for example,
the structure types of the list datatype in standard Generic Haskell (first) to our
implementation (second):

type ListS a = Sum (Con Unit) (Con (Prod a [al)) -- std GH
type ListS a = Either O (a,[al) -- prototype

Since we are not implementing all features of Generic Haskell, we can allow
ourselves this simplification.

5.3 Generic Function Definitions

The type of a generic function in Generic Haskell depends on the kind of the
datatype the function is applied to. At a glance it would seem like we could
ignore the types of a generic function, since Template Haskell does not have any
support for typing anyway. It turns out, however, that we need the type when
generating the datatype level functions. There are no type level lambdas in the
abstract syntax for types in Template Haskell and there is no datatype for kinds.
We need both these things when defining kind indexed types?, so we define a

2 type level lambdas are not strictly needed, but they make things much easier



data Kind = Star | FunK Kind Kind

data Type = ForallT [VarName] Context Type
| VarT VarName | ConT ConName

| TupleT Int | ListT | ArrowT

| AppT Type Type

| LamT [VarName] Type

a --> b = ArrowT ‘AppT‘ a ‘AppT‘ b
Fig. 7. Datatypes for kinds and types

datatype for kinds and a new datatype for types, shown in Figure 7. The kind
indexed type Map from Section 1.3 can be defined as

_Map Star = LamT ["s","t"] $ VarT "s" --> VarT "t"
_Map (FunK k 1) = LamT ["s","t"] $ ForallT ["a","b"] $
_Map k ‘AppT¢ a ‘AppT‘ b -->
_Map 1 “AppT¢ AppT s a ‘AppT‘ AppT t b
where [s,t,a,b] = map VarT ["s","t","a","b"]

This is much clumsier than the Generic Haskell syntax, but we can make things
a lot easier by observing that all type indexed types follow the same pattern.
The only thing we need to know is the number of generic and non-generic ar-
guments and the type for kind x. With this information we define the function
kindIndexedType:

kindIndexedType :: Int -- # generic arguments
-> Int -- # non-generic arguments
-> Type -- type for kind *

-> Kind -> Type
Using this function we define the type Map as

_Map = kindIndexedType 2 0 $ LamT ["s","t"]
$ VarT "s" --> VarT "t"

Now, the type of a generic function depends on the kind of the datatype it is
applied to as well as the datatype itself. So we define a generic type to be a
function from a kind and a type to a type.

type GenericType = Kind -> Type -> Type
The type of the generic map function from Section 1.3 can be defined as

gmapType :: GenericType
gmapType k t = _Map k ‘AppT¢ t ‘AppT‘ t

A generic function translates a type code to abstract Haskell syntax — we
capture this in the type synonym GenericFun:



type GenericFun = Code -> Q Exp

To deal with types containing variables and abstraction, we also need an envi-
ronment in which to store the translation of variables.

[(VarName, Q Exp)]
GEnv -> GenericFun

type GEnv
type GenericFun’

With these types at our disposal we define the default translation, that will
be the same for most generic functions. The function defaultTrans, defined
in Figure 8, takes the name of the generic function that is being constructed
and a GenericFun’ that handles the non-standard translation and produces a
GenericFun’. The idea is that a generic function should call defaultTrans on
all type codes that it does not handle (see the generic map function in Figure 9
for an example).

defaultTrans :: VarName -> GenericFun’ -> GenericFun’
defaultTrans name gfun env t = case t of

Con _ -> [I id |]

Label _ -> [| id 1]

TypeCon ¢ -> varE $ gName name c

App st -> [| $(gfun env s) $(gfun env t) |]

Lam x t -> [| \gx -> $(gfun ((x,[lgx|]):env) t) |]
Var x -> fromJust $§ lookup x env

varE :: String -> Q Exp

Fig. 8. Default generic translations

The default translation for constructors and labels is the identity function.
Since the structure type corresponding to Con and Label is the type level identity
function of kind x — x, a generic function applied to Con or Label expects a
generic function for a type of kind x and should return a generic function for the
same type.

The default translation of a named type is to call the specialized version of the
generic function for that type. The function gName takes the name of a generic
function and the name of a type and returns the name of the specialization of
the generic function to that type. In our implementation it is the responsibility
of the user to make sure that this specialization exists.

In Generic Haskell, the first three cases in defaultTrans can be changed
by the programmer, for instance using the name of a constructor when pretty
printing or defining special cases for particular types. The last three cases, on the
other hand, are hidden from Generic Haskell users. A type level application is
always translated into a value application, when encountering a type abstraction
a generic function takes the translation of the abstracted variable as an argument,



stores it in the environment and calls itself on the body of the abstraction. The
translation of a type variable is looked up in the environment.

Provided that it does not need to change the default actions a generic function
only has to provide actions for Sum, Prod and Unit. The definition of the generic
map function from Section 1.3 is shown in Figure 9. For Sum and Prod the generic
map function returns the map functions for Either and (,), and mapping over
the unit type is just the identity functions. For all other type codes we call the
defaultTrans function to perform the default actions.

gmap :: GenericFun
gmap t = gmap’ [] t
where

gmap’ env t = case t of
Sum -> [ (-+-) 1]
Prod -> [I (-*-) ]
Unit -> [| id []
t -> defaultTrans "gmap" gmap’ env t

Fig. 9. Generic map

5.4 From Structure Types to Datatypes

The generic functions defined in the style described in the previous section gen-
erate specializations for structure types, so from these structure type functions
we have to construct functions for the corresponding datatypes. In our imple-
mentation of PolyP (Section 4) this was the responsibility of the programmer
of the generic function. The reason for this was that in PolyP, the conversion
could be done in several different ways, yielding different datatype functions. In
Generic Haskell, on the other hand, we have a unique datatype function in mind
for every structure type function. For instance, look at the type of the function
generated by applying gmap to the code for the list datatype:

gmap_ListS :: (a -> b) -> Either () (a, [al)
-> Either () (b, [bD)
gmap_ListS = $(gmap listS)

From this function we want to generate the map function for List with type
gmap_List :: (a -> b) -> [a]l -> [b]

To be able to do this we first have to be able to convert between the List
datatype and its structure type. For this purpose we define a function structEP
that given the names and arities of a datatype’s constructors generates the con-
version functions between the datatype and its structure type.



structEP :: TypeName -> [(ConName, Int)] -> Q Dec

The structEP function generates a declaration of the conversion functions, so
for the list datatype it would generate something like the following:

1istEP :: EP [a] (Either () (a,[al))
1listEP = EP out inn

where
out [] = Left ()
out (x:xs) = Right (x,xs)
inn (Left () = [1

inn (Right (x,xs)) = x:xs

The EP type, shown in Figure 10, models an embedding projection pair.

data EP a b = EP { from :: a -> b, to :: b -> a }

idEP :: EP a a
idEP = EP id id

funEP :: EP a a’> -> EP b b> -> EP (a -> b) (a’ -> b?)
funEP epA epB = EP (\f -> from epB . £ . to epA)
(\g -> to epB . g . from eph)

Fig. 10. Embedding projection pairs

Using 1istEP we define the map function for the list datatype as

gmap_List :: (a -> b) -> [a] -> [b]
gmap_List f = to (funEP 1istEP 1listEP) (gmap_ListS f)

The embedding projection pair is generated directly from the type of the generic
function. In this case an embedding projection pair of type

EP ([a] -> [b]) (Either () (a,[al) -> Either () (b, [bl))

should be generated. Embedding projection pairs between function types can be
constructed with funEP, and 1istEP can convert between a list and an element of
the list structure type. We define the function typeEP to generate the appropriate
embedding projection pair.

typeEP :: Q Exp -> Kind -> GenericType -> Q Exp

The first argument to typeEP is the embedding projection pair converting be-
tween the datatype and its structure type, the second argument is the kind of
the datatype and the third argument is the type of the generic function. So to
get the embedding projection pair used in gmap_List we write

typeEP [| 1istEP |] (KFun Star Star) gmapType



5.5 Instantiation

The focus of this article is on fast prototyping of generic programming languages;
this means that we do not make great efforts to facilitate the use of the generic
functions. In particular what we do not do is figuring out which specializations
to generate. Instead we provide a function instantiate that generates the def-
inition of the specialization of a generic function to a particular datatype, as
well as a function structure, that generates the embedding projection pair def-
inition converting between a datatype and its structure type using the function
structEP from Section 5.4.

type Generic = (VarName, GenericType, GenericFun)
type Datatype = (TypeName, Kind, Code)

instantiate :: Generic -> Datatype -> Q [Dec]
structure :: Datatype -> Q [Decl]

Using these functions a map function for rose trees can be generated by

data Rose a = Fork a [Rose a]

listD = ("[]", KFun Star Star, typeCode (reifyDecl [1))
roseD = ("[]", KFun Star Star, typeCode (reifyDecl Rose))
gmapG = ("gmap", gmapType, gmap)

$(structure 1istD)

$(structure roseD)

$(instantiate gmapG listD)

$(instantiate gmapG roseD)

Since the rose trees contain lists we have to create specializations for the list
datatype as well. The code generated for gmap specialized to rose trees will look
something like the following (after some formatting and alpha renaming). Note
that gmap_RoseS uses both gmap_List and gmap_Rose.

gmap_RoseS :: (a -> b) -> (a, [Rose al) -> (b, [Rose b])
gmap_RoseS = \f -> f -*- gmap_List (gmap_Rose f)

gmap_Rose :: (a -> b) -> Rose a -> Rose b
gmap_Rose f = to (funEP roseEP roseEP) (gmap_RoseS f)

6 Conclusions and Future Work

Efforts to explore the design space of generic programming have been hampered
by the fact that implementing a generic programming language is a daunting
task. In this paper we have shown that this does not have to be the case. We
have presented two prototype implementations of generic programming approx-
imating PolyP and Generic Haskell. Thanks to the Template Haskell machinery,
these prototypes could be implemented in a short period of time (each imple-
mentation consists of a few hundred lines of Haskell code). Comparing these two



implementations we obtain a better understanding of the design space when it
comes to implementations of generic programming languages.

There are a few different areas one might want to focus future work on:

The idea of fast prototyping is to make it possible to experiment with dif-
ferent ideas in an easy way. So far, most of our work has been concentrated
on how to write the prototypes and not so much on experimenting.

One of the biggest problems with current generic programming systems is
efficiency. The conversions between datatypes and structure types takes a
lot of time and it would be a big win if one could remove this extra cost. We
have started working on a simplifier for Haskell expressions that can do this.
It would be interesting to see how other generic programming styles fit into
this framework. In particular one could look at the Data.Generics libraries
in GHC [13] and also at the generic traversals of adaptive OOP [14].

The design of a generic programming language includes the design of a type
system. In this paper we have ignored the issue of typing, leaving it up to
the Haskell compiler to find type errors in the specialized code. Is there an
easy way to build prototype type systems for our implementations?
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