
Polytypic Programming in Haskell

Ulf Norell and Patrik Jansson

Computing Science, Chalmers University of Technology, Sweden
http://www.cs.chalmers.se/�{ulfn,patrikj}/

{ulfn,patrikj}@cs.chalmers.se

Abstract. A polytypic (or generic) program captures a common pattern
of computation over di�erent datatypes by abstracting over the structure
of the datatype. Examples of algorithms that can be de�ned polytypically
are equality tests, mapping functions and pretty printers.
A commonly used technique to implement polytypic programming is spe-
cialization, where a specialized version of a polytypic function is gener-
ated for every datatype it is used at. In this paper we describe an al-
ternative technique that allows polytypic functions to be de�ned using
Haskell's class system (extended with multi-parameter type classes and
functional dependencies). This technique brings the power of polytypic
programming inside Haskell allowing us to de�ne a Haskell library of
polytypic functions. It also increases our �exibility, reducing the depen-
dency on a polytypic language compiler.

1 Introduction

Functional programming draws great power from the ability to de�ne polymor-
phic, higher order functions that can capture the structure of an algorithm while
abstracting away from the details. A polymorphic function is parameterized over
one or more types and thus abstracting away from the speci�cs of these types.
The same is true for a polytypic (or generic) function, but while all instances of
a polymorphic function share the same de�nition, the instances of a polytypic
function de�nition also depend on a type.

By parameterizing the function de�nition by a type one can capture common
patterns of computation over di�erent datatypes. Examples of functions that can
be de�ned polytypically include the map function that maps a function over a
datatype but also more complex algorithms like uni�cation and term rewriting.

Even if an algorithm will only be used at a single datatype it may still be a
good idea to implement it as a polytypic function. First of all, since a polytypic
function abstracts away from the details of the datatype, we cannot make any
datatype speci�c mistakes in the de�nition and secondly, if the datatype changes,
there is no need to change the polytypic function.

A common technique to implement polytypic programming is to specialize
the polytypic functions to the datatypes at which they are used. In other words
the polytypic compiler generates a separate function for each polytypic function-
datatype pair. Unfortunately this implementation technique requires global ac-
cess to the program using the polytypic functions. In this paper we describe an



alternative technique to implement polytypic programs using the Haskell class
system. The polytypic programs that can be de�ned are restricted to operate on
regular, single parameter datatypes. That is, datatypes that are not mutually
recursive and where the recursive calls all have the same form as the left hand
side of the datatype de�nition. Note that datatypes are allowed to contain func-
tion spaces. This technique has been implemented as a Haskell library and as a
modi�cation of the PolyP [8] compiler (PolyP version 2). The implementation
of PolyP 2 is available from the polytypic programming home page [7]. In the
following text we normally omit the version number � PolyP will stand for the
the improved language and its (new) compiler.

1.1 Overview

The rest of this paper is structured as follows. Section 2 describes how polytypic
programs can be expressed inside Haskell. The structure of regular datatypes
is captured by pattern functors (expressed using datatype combinators) and
the relation between a regular datatype and its pattern functor is captured by
a two parameter type class (with a functional dependency). In this setting a
polytypic de�nition is represented by a class with instances for the di�erent
datatype combinators. Section 3 shows how the implementation of PolyP has
been extended to translate PolyP code to Haskell classes and instances. Section 4
discusses brie�y the structure of a polytypic language. Section 5 describes related
work and section 6 concludes.

2 Polytypism in Haskell

In this section we show how polytypic programs can be embedded in Haskell.
The embedding uses datatype constructors to model the top level structure of
datatypes, and the two-parameter type class FunctorOf to relate datatypes to
their structures.

The embedding closely mimics the features of the language PolyP [8], an ex-
tension to (a subset of) Haskell that allows de�nitions of polytypic functions over
regular, unary datatypes. This section gives a brief overview of the embedding
and compares it to PolyP.

2.1 Datatypes and pattern functors

As mentioned earlier we allow de�nition of polytypic functions over regular
datatypes of kind ?→ ?. A datatype is regular if it is not mutually recursive
with another typeand if the argument to the type constructor is the same in the
left-hand side and the right-hand side of the de�nition.

We describe the structure of a regular datatype by its pattern functor . A pat-
tern functor is a two-argument type constructor built up using the combinators
shown in �gure 1. (The in�x combinators are right associative and their order
of precedence is, from lower to higher: (:+:), (:∗:), (:→:), (:@:).) For instance for



data (g :+: h) p r = InL (g p r) | InR (h p r)
data (g :∗: h) p r = g p r :∗: h p r
data Empty p r = Empty
newtype Par p r = Par {unPar :: p}
newtype Rec p r = Rec {unRec :: r}
newtype (d :@: h) p r = Comp {unComp :: d (g p r)}
newtype Const t p r = Const {unConst :: t}
newtype (g :→: h) p r = Fun {unFun :: g p r → h p r}

Fig. 1. Pattern functor combinators

the datatype List a we can use these combinators to de�ne the pattern functor
ListF as follows:

data List a = Nil | Cons a (List a)
type ListF = Empty :+: Par :∗: Rec

An element of ListF p r can take either the form InL Empty, corresponding to Nil
or the form InR (Par x :∗: Rec xs), corresponding to Cons x xs.

The pattern functor d :@: g represents the composition of the regular data-
type constructor d and the pattern functor g , allowing us to describe the struc-
ture of datatypes like Rose:

data Rose a = Fork a (List (Rose a))
type RoseF = Par :∗: List :@: Rec

A constant type in a datatype de�nition is modeled by the pattern functor
Const t. For instance, the pattern functor of a binary tree storing height infor-
mation in the nodes can be expressed as

data HTree a = Leaf a | Branch Int (HTree a) (HTree a)
type HTreeF = Par :+: Const Int :∗: Rec :∗: Rec

The pattern functor (:→:) is used to model datatypes with function spaces. Only
a few polytypic functions are possible to de�ne for such datatypes. We include
the combinator (:→:) here because our system can handle it, but for the rest of
the paper we assume regular datatypes without function spaces.

In general we write ΦD for the pattern functor of the datatype D a, so for
example ΦList = ListF. To convert between a datatype and its pattern functor
we use the methods inn and out in the multi-parameter type class FunctorOf:

class FunctorOf f d | d → f where
inn :: f a (d a)→ d a
out :: d a → f a (d a)

The functions inn and out realize the isomorphism d a ∼= Φd a (d a), that holds
for every regular datatype. (We can view a regular datatype d a as the least �xed
point of the corresponding functor Φd a.)



In our list example we have

instance FunctorOf (Empty :+: Par :∗: Rec) List where
inn (InL Empty) = Nil
inn (InR (Par x :∗: Rec xs)) = Cons x xs
out Nil = InL Empty
out (Cons x xs) = InR (Par x :∗: Rec xs)

Note that inn (out) only folds (unfolds) the top level structure and it is therefore
normally a constant time operations.

The functional dependency d → f in the FunctorOf-class means that the
set of instances de�nes a type level function from datatypes to their pattern
functors. Several di�erent datatypes can map to the the same pattern functor
if they share the same structure, but one datatype can not have more than one
associated pattern functor.

2.2 Pattern functor classes

In addition to the class FunctorOf, used to relate datatypes to pattern func-
tors, we also use one pattern functor class P_name for each (group of related)
polytypic de�nition(s) name. A pattern functor class is just a constructor class
with one parameter of kind ?→ ?→ ? with one (or more) polytypic de�nitions
as methods. The set of instances for a class P_name de�nes for which pattern
functors the polytypic de�nition(s) name is meaningful.

An example is a generalization of the standard Haskell Prelude class Functor
to the pattern functor class P_fmap2:

class Functor f where
fmap :: (a → b)→ (f a → f b)

class P_fmap2 f where
fmap2 :: (a → c)→ (b → d)→ (f a b → f c d)

All pattern functors except (:→:) are instances of the class P_fmap2. Pattern
functor classes and their instances are discussed in more detail in section 3.

2.3 PolyLib in Haskell

PolyLib [9] is a library of polytypic de�nitions including generalized versions of
well-known functions such as map, zip and sum, as well as powerful recursion
combinators such as cata, ana and hylo. All these library functions have been
converted to work with our new framework, so that PolyLib is now available as a
normal Haskell library. The library functions can be used on all datatypes which
are instances of the FunctorOf class and if the user provides the FunctorOf-
instances, no tool support is needed. Alternatively, for all regular datatypes,
these instances can be generated automatically by the new PolyP compiler (or
by DrIFT, or potentially by Template Haskell).



Using fmap2 from the P_fmap2-class and inn and out from the FunctorOf
class we can already de�ne quite a few polytypic functions from the Haskell
version of PolyLib. For instance

pmap :: (FunctorOf f d ,P_fmap2 f )⇒ (a → b)→ (d a → d b)
cata :: (FunctorOf f d ,P_fmap2 f )⇒ (f a b → b)→ (d a → b)
ana :: (FunctorOf f d ,P_fmap2 f )⇒ (b → f a b)→ (b → d a)

pmap f = inn ◦ fmap2 f (pmap f ) ◦ out
cata ϕ = ϕ ◦ fmap2 id (cata ϕ) ◦ out
ana ψ = inn ◦ fmap2 id (ana ψ) ◦ ψ

We can use the functions above to de�ne other polytypic functions. For instance,
we can use cata to de�ne a generalization of sum :: Num a ⇒ [a] → a which
works for all regular datatypes. Suppose we have a pattern functor class P_fsum
with the method fsum:

fsum :: Num a ⇒ f a a → a

(Method fsum takes care of summing the top-level, provided that the recursive
occurrences have already been summed.) Then we can sum the elements of a
regular datatype by de�ning

psum :: (FunctorOf f d , P_fmap2 f ,P_fsum f ,Num a)⇒ d a → a
psum = cata fsum

We return to the function fsum in section 3.1 when we discuss how the pattern
functor classes are de�ned. In the type of psum we can see an indication of a
problem that arises when combining polytypic functions without instantiating
them to concrete types: we get large class constraints. Fortunately we can let the
Haskell compiler infer the type for us in most cases, but our setting is certainly
one which would bene�t from extending Haskell type constraint syntax to allow
wildcards.

2.4 Perfect binary trees

A bene�t of using the class system to do polytypic programming is that it allows
us to treat (some) non-regular datatypes as regular, thus providing a regular view

of the datatype. For instance, take the nested datatype of perfect binary trees,
de�ned by

data Bin a = Single a | Fork (Bin (a, a))

This type can be viewed as having the pattern functor Par :+: Rec :∗: Rec, i.e.
the same as the ordinary binary tree.

data Tree a = Leaf a | Branch (Tree a) (Tree a)



instance FunctorOf (Par :+: Rec :∗: Rec) Bin where
inn (InL (Par x )) = Single x
inn (InR (Rec l :∗: Rec r)) = Fork (join (l , r))
out (Single x ) = InL (Par x )
out (Fork t) = InR (Rec l :∗: Rec r)

where (l , r) = split t

join :: (Bin a,Bin a)→ Bin (a, a)
join (Single x ,Single y) = Single (x , y)
join (Fork l ,Fork r) = Fork (join (l , r))

split :: Bin (a, a)→ (Bin a,Bin a)
split (Single (x , y)) = (Single x ,Single y)
split (Fork t) = (Fork l , Fork r)

where (l , r) = split t

Fig. 2. A FunctorOf instance for perfect binary trees

By de�ning an instance of the FunctorOf class for Bin (see Fig. 2) we can then
use all the PolyLib functions on perfect binary trees. For instance we can use an
anamorphism to generate a full binary tree of a given height as follows.

full :: a → Int→ Bin a
full x = ana (step x )

where step x 0 = InL (Par x )
step x (n + 1) = InR (Rec n) (Rec n)

By forcing the perfect binary trees into the regular framework we (naturally)
loose some type information. Had we, for instance, made a mistake in the de�-
nition of full so that it didn't generate a full tree, we would get a run-time error
(pattern match failure in join) instead of a type error.

2.5 Abstract datatypes

In the previous example we provided a regular view on a non-regular datatype.
We can do the same thing for (some) abstract datatypes. Suppose we have an
abstract datatype Stack, with methods

push :: a → Stack a → Stack a
pop :: Stack a → Maybe (a, Stack a)
empty :: Stack a

By giving the following instance, we provide a view of the stack as a regular
datatype with the pattern functor Empty :+: Par :∗: Rec.

instance FunctorOf (Empty :+: Par :∗: Rec) Stack where



inn (InL Empty) = empty
inn (InR (Par x :∗: Rec s)) = push x s

out s = case pop s of
Nothing → InL Empty
Just (x , s ′)→ InR (Par x :∗: Rec s ′)

As in the previous example, this instance allows us to use polytypic functions on
stacks, for instance applying the function psum to a stack of integers or using
pmap to apply a function to all the elements on a stack.

2.6 Polytypic functions in Haskell

We have seen how to make di�erent kinds of datatypes �t the polytypic frame-
work, thus enabling us to use the polytypic functions from PolyLib on them, but
we can also use the PolyLib functions to create new polytypic functions. One
interesting function that we can de�ne is the function coerce

coerce :: (FunctorOf f d , FunctorOf f e, P_fmap2 f )⇒ d a → e a
coerce = cata inn

that converts between two regular datatypes with the same pattern functor.
For instance we could convert a perfect binary tree from section 2.4 to a nor-
mal binary tree or convert a list to an element of the abstract stack type from
section 2.5.

Another use of polytypic functions in Haskell is to de�ne default instances of
the standard type classes. For instance we can de�ne

instance (FunctorOf f d ,P_fmap2 f )⇒ Functor d where
fmap = pmap

This requires Haskell extensions (available in ghc and hugs) for overlapping and
undecidable instances, in addition to the multi-parameter type classes.

Using the polytypic library we can also de�ne more complex functions such
as the transpose function that transposes two regular datatypes. For instance,
converting a list of trees to a tree of lists. To de�ne transpose we �rst de�ne the a
function listTranspose for the special case of transposing the list type constructor
with another regular type constructor. We omit the class constraints in the types
for brevity.

listTranspose :: . . .⇒ [d a]→ d [a]
listTranspose (x : []) = pmap singleton x
listTranspose (x : xs) = pzipWith (:) x (listTranspose xs)

The function pzipWith is the polytypic version of the Haskell prelude function
zipWith and has type . . .⇒ (a → b → c)→ d a → d b → d c. If the structures
of the arguments to pzipWith di�er the function fails. Using listTranspose we
can de�ne transpose as follows:



transpose :: . . .⇒ d (e a)→ e (d a)
transpose x = pmap (combine s) (listTranspose l)

where (s, l) = separate x

The idea is to separate the structure and the contents of the argument to
transpose using the function separate :: . . .⇒ d a → (d (), [a]). The unstruc-
tured representation is then transposed using listTranspose and the structure is
re-applied using combine :: . . .⇒ d ()→ [a]→ d a. Again combine might fail if
the length of the list doesn't match the number of holes in the structure. It is
easy to modify transpose to use the Maybe monad to catch the potential failures.

3 A polytypic Haskell extension

So far we have seen how we can use the polytypic functions de�ned in PolyLib
directly in our Haskell program, either applying them to speci�c datatypes or
using them to de�ne other polytypic functions. In section 3.1 below, we describe
how to de�ne polytypic functions from scratch using a modi�ed version of the
PolyP language [8]. The polytypic de�nitions in PolyP can also be expressed
in Haskell, but the syntax of the language extension is more convenient than
writing the classes and the instances by hand. Sections 3.2 to 3.6 discuss how
the PolyP de�nitions are compiled into Haskell.

3.1 The polytypic construct

In section 2.1 we introduced the pattern functor Φd of a regular datatype d a.
In PolyP we de�ne polytypic functions by recursion over this pattern functor,
using a type case construct that allows us to pattern match on pattern functors.
This type case construct is translated by the compiler into a pattern functor
class and instances corresponding to the branches.

To facilitate the de�nition of polytypic functions we de�ne a few useful func-
tions to manipulate the pattern functors.

(f O g) (InL x ) = f x
(f O g) (InR y) = g y
f −+− g = (InL ◦ f ) O (InR ◦ g)

The operators (O) and (−+−) are the elimination and map functions for sums.
The types of these functions are a little more complex than one would like, since
they operate on binary functors. For this reason we have chosen to omit them
in this presentation.

Using the type case construct and the functions above, in Fig. 3 we de�ne
the function fsum from section 2.3 that operates on pattern functors applied to
some numeric type. This function takes an element of type f a a where a is in
Num and f is a pattern functor. The �rst a means that the parameter positions
contain numbers and the second a means that all the substructures have been
replaced by numbers (sums of the corresponding substructures). The result of



polytypic fsum :: Num a ⇒ f a a → a
= case f of

g :+: h → fsum O fsum
g :∗: h → λ(x :∗: y)→ fsum x + fsum y
Empty → const 0
Par → unPar
Rec → unRec
d :@: g → psum ◦ pmap fsum ◦ unComp
Const t → const 0

Fig. 3. De�ning fsum using the polytypic construct

fsum is the sum of the numbers in the top level structure. To sum the elements
of something of a sum type we just apply fsum recursively regardless of if we are
in the left or right summand. If we have something of a product type we sum
the components and add the results together. The sum of Empty or a constant
type is zero and when we get one Par and Rec they already contain a number so
we just return it. If the pattern functor is a regular datatype d a composed with
a pattern functor g we map fsum over d and use the function psum to sum the
result.

In general a polytypic de�nition has the form

polytypic p :: τ
= λ x1 . . . xm → case f of

ϕ1 → e1
...

ϕn → en

where f is the pattern functor (occurring somewhere in τ) and ϕi is an arbitrary
pattern matching a pattern functor. The lambda abstraction before the type
case is optional and a short hand for splicing in the same abstraction in each
of the branches. The type of the branch body depends on the branch pattern;
more speci�cally we have (λ x1 . . . xm → ei) :: τ [ϕi/f ].

A polytypic de�nition operates on the pattern functor level, but what we
are really interested in are functions on the datatype level. We have already seen
how to de�ne these functions in Haskell and the only di�erence when de�ning
them in PolyP is that the class constraints are simpler. Take for instance the
datatype level function psum which can be de�ned as the catamorphism of fsum:

psum :: (Regular d ,Num a)⇒ d a → a
psum = cata fsum

The class constraint Regular d is translated by the PolyP compiler to a constraint
FunctorOf Φd d and constraints for any suitable pattern functor classes on Φd .



In summary, the polytypic construct allows us to write polytypic functions
over pattern functors by recursion over the structure of the pattern functor. We
can then use these functions together with the functions inn and out to de�ne
functions that work on all regular datatypes.

3.2 Compilation: from PolyP to Haskell

Given a PolyP program we want to generate Haskell code that can be fed into a
standard Haskell compiler. Our approach di�ers from the standard one in that
we achieve polytypism by taking advantage of the Haskell class system, instead
of specializing polytypic functions to the datatypes on which they are used.
The compilation of a PolyP program consists of three phases each of which is
described in the following subsections. In the �rst phase, described in section 3.3,
the pattern functor of each regular datatype is computed and an instance of the
class FunctorOf is generated, relating the datatype to its functor. The second
phase (section 3.4) deals with the polytypic de�nitions. For every polytypic
function a type class is generated and each branch in the type case is translated to
an instance of this class. The third phase is described in section 3.5 and consists of
inferring the class constraints introduced by our new classes. Section 3.6 describes
how the module interfaces are handled by the compiler. Worth mentioning here
is that we do not need to compile ordinary function de�nitions (i.e. functions
that have not been de�ned using the polytypic keyword) even when they use
polytypic functions. So for instance the de�nition of the function psum from
section 3.1 is the same in the generated Haskell code as in the PolyP code. The
type on the other hand does change, but this is handled by phase three.

3.3 From datatypes to instances

When compiling a PolyP program into Haskell we have to generate an instance
of the class FunctorOf for each regular datatype. How to do this is described
in the rest of this section. First we observe that we can divide the pattern
functor combinators into two categories: structure combinators that describe the
datatype structure and content combinators that describe the contents of the
datatype. The structure combinators, (:+:), (:∗:) and Empty, tell you how many
constructors the datatype has and their arities, while the content combinators,
Par, Rec, Const and (:@:) represent the arguments of the constructors. For a
content pattern functor g we introduce the the meaning of g , denoted by ĝ ,
de�ned by

P̂ar p r = p
R̂ec p r = r
Ĉonstt p r = t
d̂ :@: g p r = d (ĝ p r)

Using this notation we can write the general form of a regular datatype as



data D a = C1 (ĝ11 a (D a)) . . . (ĝ1m1 a (D a))
...
| Cn (ĝn1 a (D a)) . . . (ĝnmn a (D a))

The corresponding pattern functor ΦD is

ΦD = (g11 :∗: · · · :∗: g1m1) :+: · · · :+: (gn1 :∗: · · · :∗: gnmn
)

where we represent a nullary product by Empty. When de�ning the functions inn
and out for D a we need to convert between gij and ĝij . To do this we associate
with each content pattern functor g two functions tog and fromg such that

tog :: ĝ p r → g p r � tog ◦ fromg = id
fromg :: g p r → ĝ p r � fromg ◦ tog = id

For the pattern functors Par, Rec and Const, to and from are de�ned simply as
adding and removing the constructor. In the case of the pattern functor d :@: g
we also have to map the conversion function for g over the regular datatype d a,
as shown below.

toPar = Par fromPar = unPar
toRec = Rec fromRec = unRec
toConst t = Const fromConst t = unConst
tod :@: g = Comp ◦ pmap tog fromd :@: g = pmap fromg ◦ unComp

Now de�ne ιnm to be the sequence of InL and InR's corresponding to the mth

constructor out of n, as follows

ιnm x =


x if n = m = 1
InL x if m = 1 ∧ n > 1
InR (ιn−1

m−1 x) if m,n > 1

For instance the second constructor out of three is ι32 x = InR (InL x ).
Finally an instance FunctorOf ΦD D for the general form of a regular datatype

D a can be de�ned as follows:

instance FunctorOf ΦD D where
inn (ιnk (x1 :∗: . . . :∗: xmk

)) = Ck (togk1 x1) . . . (togkmk
xmk

)
out (Ck x1 . . . xmk

) = ιnk (fromgk1 x1 :∗: . . . :∗: fromgkmk
xmk

)

3.4 From polytypic de�nitions to classes

The second phase of the code generation deals with the translation of the
polytypic construct. This translation is purely syntactic and translates each
polytypic function into a pattern functor class with one method (the polytypic
function) and an instance of this class for each branch in the type case. More



polytypic p :: τ
= case f of

ϕ1 → e1

...
ϕn → en

 =⇒


class P_p f where p :: τ
instance ρ1 ⇒ P_p ϕ1 where p = e1

...
instance ρn ⇒ P_p ϕnwhere p = en

Fig. 4. Translation of a polytypic construct to a class and instances

formally, given a polytypic function de�nition like the left side in Fig. 4 the
translation produces the result on the right.

However, the instances generated by this phase are not complete. To make
them pass the Haskell type checker we have to �ll in the appropriate class con-
straints ρi . For example, in the de�nition of fsum from section 3.1, the instance
P_fsum (g :+: h) needs instances of P_fsum for g and h. How to infer these
constraints is the topic of the next section.

3.5 Inferring class constraints

When we introduce a new class for every polytypic function we automatically
introduce a class constraint everywhere this function is used. Ideally the Haskell
compiler should be able to infer these constraints for us, allowing us to simply
leave out the the types in the generated Haskell code. This is indeed the case
most of the time, but there are a few exceptions that require us to take a more
rigorous approach. For example, class constraints must be explicitly stated in
instance declarations. In other cases the Haskell compiler can infer the type of a
function, but it might not be the type we want. For instance, the inferred type
of the function pmap is

pmap :: (FunctorOf f d , FunctorOf f e, P_fmap2 f )⇒ (a → b)→ d a → e b

which is a little too general to be practical. For instance, in the expression
psum (pmap (1+) [1, 2, 3]), the compiler wouldn't be able to infer the return type
of pmap. To get the type we want the inferred type is uni�ed with the type stated
in the PolyP code. When doing this we have to replace the constraint Regular d
in the PolyP type, by the corresponding Haskell constraint FunctorOf f d for a
free type variable f . Subsequently we replace all occurrences of Φd in the type
body with f . We also add a new type constraint variable to the given type, that
can be uni�ed with the set of new constraints inferred in the type inference. In
the case of pmap we would unify the inferred type from above with the modi�ed
version of the type stated in the PolyP code:

(FunctorOf f d , ρ)⇒ (a → b)→ d a → d b

Here e would be identi�ed with d and ρ would be uni�ed with {P_fmap2 f },
yielding the type we want.



The instance declarations can be treated in much the same way. That is, we
infer the type of the method body and unify this type with the expected type
of the method. We take the de�nition of fsum in Fig. 3 as an example. This
de�nition is translated to a class and instance declarations for each branch:

class P_fsum f where fsum :: Num a ⇒ f a a → a
instance ρ+ ⇒ P_fsum (g :+: h) where fsum = fsum O fsum
...

In the instance for the pattern functor g :+: h, the PolyP compiler infers the
following type for fsum

(Num a,P_fsum g , P_fsum h)⇒ (g :+: h) a a → a

This type is then uni�ed with the type of fsum extended with the constraint set
variable ρ+ serving as a place holder for the extra class constraints:

(Num a, ρ+)⇒ f a a → a

In this case the result of the uni�cation would be

f 7→ g :+: h
ρ+ 7→ {P_fsum g ,P_fsum h}

The part of the substitution that we are interested in is the assignment of ρ+,
i.e. the class constraints that are in the instance declaration but not in the class
declaration. We obtain the following �nal instance of P_fsum (g :+: h):

instance (P_fsum g , P_fsum h)⇒ P_fsum (g :+: h) where
fsum = fsum O fsum

3.6 Modules: transforming the interface

The old PolyP compiler used the cut-and-paste approach to modules, treating
import statements as C-style includes, e�ectively ignoring explicit import and
export lists. Since we claim that embedding polytypic programs in Haskell's class
system alleviates separate compilation, we, naturally, have to do better than the
cut-and-paste approach.

To be able to compile a PolyP module without knowledge of the source code of
all imported modules, we generate an interface �le for each module, containing
the type signatures for all exported functions as well as the de�nitions of all
exported datatypes in the module. The types of polytypic functions are given
in Haskell form (that is using FunctorOf and P_name, not Regular), because we
need to know the class constraints when inferring the constraints for functions
in the module we are compiling.

A slightly trickier issue is the handling of explicit import and export lists
in PolyP modules. Fortunately, the compilation does not change the function



names, so we do not have to change which functions are imported and exported.
However, we do have to import and export the generated pattern functor classes.
This is done by looking at the types of the functions in the import/export list
and collecting all the pattern functor classes occurring in their constraints. So
given the following PolyP module

module Sum (psum) where
import Map (pmap)

polytypic fsum :: . . . = 〈de�nition using psum〉
psum = cata fsum

we would generate a Haskell module looking like this:

module Sum (psum, P_fmap2, P_fsum) where
import Map (pmap, P_fmap2)
...

The P_fmap2 in the import declaration comes from the type of pmap, which
is looked up in the interface �le for the module Map, and the two exported
classes come from the inferred type of psum. The interface �les are generated
by the compiler when it compiles a PolyP module. At the moment there is no
automated support for generating interface �les for normal Haskell modules,
though this should be possible to add.

4 Discussion

One of the bene�ts of using the class system is that we do not need to rely on a
polytypic compiler to the same extent as when using a specializing approach. To
make this more precise we identify a few disjoint sublanguages within a polytypic
language:

� Base The base language (no polytypic functions) � Haskell

� PolyCore Polytypic de�nitions (syntactic extension)

� PolyUse Polytypic de�nitions in terms of de�nitions in PolyCore

� PolyInst Instantiating polytypic de�nitions on speci�c types

� Regular De�nitions of regular datatypes (a subset of Base)

Using a specializing compiler translating into Base we have to compile at least
PolyCore, PolyUse, PolyInst and Regular. With the new PolyP we only need to
compile PolyCore (and may choose to compile Regular), thus making it possible
to write a library of polytypic functions, compile it into Haskell and use it just
like any library of regular Haskell functions.

5 Related work

A number of languages and tools for polytypic programming with Haskell have
been described in the last few years:



� The old PolyP [8] allows user-de�ned polytypic de�nitions over regular data-
types. The language for de�ning polytypic functions is more or less the same
as in our work, however, the expressiveness of old PolyP is hampered by the
the fact that the specialization needs access to the entire program. Neither
the old nor the new PolyP compiler supports full Haskell 98, something that
severely limits the usefulness of the the old version, while in the new version
it is merely a minor inconvenience.

� Generic Haskell [2, 5] allows polytypic de�nitions over Haskell datatypes of
arbitrary kinds. The Generic Haskell compiler uses specialization to compile
polytypic programs into Haskell, which means that it su�ers from the draw-
backs mentioned above, namely that we have to apply the compiler to any all
all code that mentions polytypic functions or contains datatype de�nitions.
This is not as serious in Generic Haskell as it is in old PolyP however, since
Generic Haskell supports full Haskell 98 and has reasonably good support
for separate compilation. A more signi�cant shortcoming of Generic Haskell
is that it does not allow access to the recursive calls in a datatype, so we
cannot de�ne, for instance, the function children :: t → [t ] that takes an
element of a datatype and returns the list of its immediate children.
Generic Haskell only allows de�nitions of polytypic functions over arbitrary
kinds, even if a function is only intended for a single kind. This sometimes
makes it rather di�cult to come up with the right de�nition for a polytypic
function.

� Derivable type classes [6] is an extension of the Glasgow Haskell Compiler
(ghc) which allows limited polytypic de�nitions. The user can de�ne poly-
typic default methods for a class by giving cases for sums, products and the
singleton type. To make a datatype an instance of a class with polytypic
default methods it su�ces to give an empty instance declaration. Neverthe-
less this requires the user to write an empty instance declaration for each
polytypic function-datatype pair while we only require a FunctorOf-instance
for each datatype. Furthermore the derivable type classes extension only al-
lows a limited form of polytypic functions over kind ?, as opposed to kind
?→ ? in PolyP. Only allowing polytypic functions over datatypes of kind ?
excludes many interesting functions, such as pmap, and since a datatype of
kind ? can always be transformed into a datatype of kind ?→ ? (by adding
a dummy argument) we argue that our approach is preferable. A similar
extension to derivable type classes, exists also for Clean [1].

� DrIFT preprocessor for deriving non-standard Haskell classes has been used
together with the Strafunski library [13, 14] to provide generic programming
in Haskell. The library de�nes combinators for de�ning generic traversal and
generic queries on datatypes of kind ?. A generic traversal is a function of
type t → m t for some monad m and a generic query on t has type t → a.
The library does not support functions of any other form, such as unfolds or
polytypic equality.
The Strafunski implementation relies on a universal term representation,
and generic functions are expressed as normal Haskell functions over this
representation. This means that only the Regular sublanguage has to be



compiled (suitable instances to convert to and from the term representation
have to be generated). This is done by the DrIFT preprocessor.

� Recently Lämmel and Peyton-Jones [12] have incorporated a version of Stra-
funski in ghc providing compiler support for de�ning generic functions. This
implementation has the advantage that the appropriate instances can be de-
rived by the compiler, only requiring the user to write a deriving-clause for
each of her datatypes. Support has been added for unfolds and so called twin
transformations (of type t → t → m t) which enables for instance, polytypic
read, equality and zip functions. Still, only datatypes of kind ? is handled,
so we cannot get access to the parameters of a datatype.

� Sheard [16] describes how to use two-level types to implement e�cient generic
uni�cation. His ideas, to separate the structure of a datatype (the pattern
functor) from the actual recursion, are quite similar to those used in PolyP,
although he lacks the automated support provided by the PolyP compiler.
In fact, the functions that Sheard requires over the structure of a datatype
can all be de�ned in PolyP.

Other implementations of functional polytypism include Charity [3], FISh [11]
and G'Caml [4] but in this paper we focus on the Haskell-based languages.

6 Conclusions

In this paper we have shown how to bring polytypic programming inside Haskell,
by taking advantage of the class system. To accomplish this we introduced
datatype constructors for modeling the top level structure of a datatype, to-
gether with a multi-parameter type class FunctorOf relating datatypes to their
top level structure.

Using this framework we have been able to rephrase the PolyLib library [9]
as a Haskell library as well as de�ne new polytypic functions such as coerce that
converts between two datatypes of the same shape and the transpose function
that commutes a composition of two datatypes, converting, for instance, a list
of trees to a tree of lists.

To aid in the de�nition of polytypic functions we have a compiler that trans-
lates custom polytypic de�nitions to Haskell classes and instances. The same
compiler can generate instances of FunctorOf for regular datatypes, but the
framework also allows the programmer to give hand made FunctorOf instances,
thus extending the applicability of the polytypic functions to datatypes that are
not necessarily regular.

One direction for future work could be to use Template Meta-Haskell [17]
to internalize the PolyP compiler as a ghc extension. Other research directions
are to extend our approach to more datatypes (partially explored in [15]), or to
explore in more detail which polytypic functions are expressible in this setting.



References

1. A. Alimarine and R. Plasmeijer. A generic programming extension for Clean. In
T. Arts and M. Mohnen, editors, Proceedings of the 13th International Workshop
on the Implementation of Functional Languages, IFL 2001 , volume 2312 of LNCS,
pages 168�185. Springer-Verlag, 2001.

2. D. Clarke and A. Löh. Generic haskell, speci�cally. In J. Gibbons and J. Jeuring,
editors, Proceedings of the IFIP TC2 Working Conference on Generic Program-
ming, pages 21�48. Kluwer, 2003.

3. R. Cockett and T. Fukushima. About Charity. Yellow Series Report No. 92/480/18,
Dep. of Computer Science, Univ. of Calgary, 1992.

4. J. Furuse. Generic polymorphism in ML. In Journées Francophones des Langages
Applicatifs, 2001.

5. R. Hinze and J. Jeuring. Generic Haskell: Practice and theory. To appear in the
lecture notes of the Summer School on Generic Programming, LNCS Springer-
Verlag, 2002/2003.

6. R. Hinze and S. Peyton Jones. Derivable type classes. In G. Hutton, editor, Pro-
ceedings of the 2000 ACM SIGPLAN Haskell Workshop , volume 41.1 of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2001.

7. P. Jansson. The WWW home page for polytypic programming. Available from
http://www.cs.chalmers.se/~patrikj/poly/ , 2003.

8. P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension.
In POPL'97, pages 470�482. ACM Press, 1997.

9. P. Jansson and J. Jeuring. PolyLib � a polytypic function library. Workshop
on Generic Programming, Marstrand, June 1998. Available from the Polytypic
programming WWW page [7].

10. P. Jansson and J. Jeuring. A framework for polytypic programming on terms,
with an application to rewriting. In Workshop on Generic Programming . Utrecht
University, 2000. UU-CS-2000-19.

11. C. Jay and P. Steckler. The functional imperative: shape! In C. Hankin, editor,
Programming languages and systems: 7th European Symposium on Programming,
ESOP'98, volume 1381 of LNCS, pages 139�53. Springer-Verlag, 1998.

12. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. In A. SIGPLAN, editor, Proc. of the ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI 2003) . ACM
Press, 2003. To appear in ACM SIGPLAN Notices.

13. R. Lämmel and J. Visser. Strategic polymorphism requires just two combinators!
Technical Report cs.PL/0212048, arXiv, Dec. 2002.

14. R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Proc.
Practical Aspects of Declarative Programming PADL 2002 , volume 2257 of LNCS,
pages 137�154. Springer-Verlag, Jan. 2002.

15. U. Norell. Functional generic programming and type theory. Master's thesis,
Computing Science, Chalmers University of Technology, 2002. Available from
http://www.cs.chalmers.se/~ulfn .

16. T. Sheard. Generic uni�cation via Two-Level types and parameterized modules.
In ICFP'01, pages 86�97, 2001.

17. T. Sheard and S. P. Jones. Template meta-programming for Haskell. In Proceedings
of the Haskell workshop , pages 1�16. ACM Press, 2002.


