Safe Navigation in OCL

Edward D. Willink?

Willink Transformations Ltd, Reading, England,
ed_at_willink.me.uk

Abstract. The null object has been useful and troublesome ever since
it was introduced. The problems have been mitigated by references in
C++, annotations in Java or safe navigation in Groovy, Python and
Xbase. Introduction of a safe navigation operator to OCL has some rather
unpleasant consequences. We examine these consequences and identify
further OCL refinements that are needed to make safe navigation useable.

Keywords: OCL, safe navigation, multiplicity, non-null, null-free

1 Introduction

Tony Hoare apologized in 2009 [3] for inventing the null reference in 1965. This
‘billion dollar mistake’ has been causing difficulties ever since. However NIL had
an earlier existence in LISP and I'm sure many of us would have made the same
mistake.

The problem arises because the null object has many, but not all, of the
behaviors of an object and any attempt to use one of the missing behaviors
leads to a program failure. Perhaps the most obvious missing behavior is used
by the navigation expression anObject.name which accesses the name property
of anObject. Whenever anObject can be null, accessing its name property can
cause the program to fail.

A reliable program must avoid all navigation failures and so must prove that
the source object of every navigation expression is never null. This is often too
formidable an undertaking. We are therefore blessed with many programs that
fail due to NullPointerException when an unanticipated control path is followed.

Language enhancements such as references [2] in C++ allow the non-nullness
of objects to be declared as part of the source code. Once these are exploited by
good programmers, compile-time analysis can identify a tractably small number
of residual navigation hazards that need to be addressed.

A similar capability is available using @NonNull [5] annotations in Java,
however problems of legacy compatibility for Java’s large unannotated libraries
makes it very hard to achieve comprehensive detection of null navigation hazards.

An alternative approach is pursued by languages such as Groovy [4], Python [8]
and Xbase [10]. A safe navigation operator makes the nulls less dangerous so that
anObject?.name avoids the failure if anObject is null. The failure is replaced by a
null result which may solve the problem, or may just move the problem sideways
since the program must now be able to handle a null name.

In this paper we consider how OCL can combine the static rigor of C++-like
references with the dynamic convenience of a safe navigation operator. In Sec-
tion 2 we introduce the safe navigation operators to OCL and identify that their
impact may actually be detrimental. We progressively remedy this in Section 3 by
introducing non-null object declarations, null-free collection declarations, null-
safe libraries, null-safe models and consider the need for a deep non-null analysis.
Finally we briefly consider related work in Section 4 and conclude in Section 5.

2 Safe Navigation Operators

OCL 2.4 [7] has no protection against the navigation of null objects; any such
navigation yields an invalid value. This is OCL’s way of accommodating a pro-
gram failure that other languages handle as an exception. OCL provides powerful
navigation and collection operators enabling compact expressions such as

aPerson.father.name.toUpper ()

This obviously fails if aPerson is null. It also fails whenever father is null
as may be inevitable in a finite model. A further failure is possible if name is null
as may happen for an incomplete model.

2.1 Safe Object Navigation Operator

We can easily introduce the safe object navigation operator 7. to OCL by defin-
ing x7.y as a short-form for

if x <> null then x.y else null endif
We can rewrite aPerson.father.name.toUpper () for safety as
aPerson?.father?.name?.toUpper ()

This ensures that the result is the expected value or null; no invalid failure.

2.2 Safe Collection Navigation Operator

Collection operations are a very important part of OCL and any collection nav-
igation such as

aPerson.children->collect (name)

will fail if any element of the children collection is null.
We can easily introduce the safe collection navigation operator 7-> to OCL
by defining x?->y as a short-form for

x->excluding(null)->y
We can rewrite the problematic collection navigations for safety as:
aPerson?.children?->collect (name)

This ensures that any null children are ignored and so do not cause an
invalid failure.

2.3 Safe Implicit-Collect Navigation Operator

The previous example is the long form of explicit collect and so could be written
more compactly as:

aPerson.children.name

The long form of the 7. operator in x7.y is therefore
x->excluding(null)->collect(y)

We can rewrite for safety as
aPerson?.children?.name

This again ensures that null children are ignored.

2.4 Assessment

OCL 2.4 already has distinct object and collection navigation operators, with
implicit-collect and implicit-as-set short-forms. These are sufficient to confuse
new or less astute OCL programmers, who may just make a random choice and
hope for a tool to correct the choice. Adding a further two operators can only
add to the confusion. We must therefore look closely at how tooling can exploit
the rigor of OCL to ensure that safe navigation usefully eliminates the null value
fragility.

2.5 Safe Navigation Validation

The safe navigation operators should assist in eliminating errors and the follow-
ing tentative Well Formedness Rules can identify an appropriate choice.

Error: Safe Navigation Required. If the navigation source could be null, a
safe navigation operator should be used to avoid a run-time hazard.

Warning: Safe Navigation not Required. If the navigation source cannot be
null, a safe navigation operator is unnecessary and may incur run-time overheads.

The critical test is could-be-null / cannot-be-null. How do we determine this
for OCL?

Some expressions such as constants 42 or Set{true} are inherently not null.
These can contribute to a program analysis so that a compound expression such
as if ... then Set{42} else Set{} endif is also non-null even though we
may not know anything about the if-condition. Unfortunately, OCL permits any
object to be null and so all accesses to objects can be null. In practice this means
that most OCL expressions cannot be usefully analyzed and the validation WFRs
will just force users to write 7. everywhere just to silence the irritating errors.

3 Non-null declarations

We have seen how the safe navigation operator is unuseably pessimistic when
non-null objects cannot be usefully identified. We will therefore examine how to
identify such objects.

3.1 Non-null Object declarations

We could consider introducing non-null declarations analogous to C++ reference
declarations. We could even re-use the & character. But we don’t need to, since
UML [9] already provides a solution and a syntax. When declaring a TypedEle-
ment, a multiplicity may qualify the type:

mandatoryName : String[1]
optionalName : String[7]

[7] indicates that a String value is optional; a null value is permitted.

[1] indicates that a String value is required; a null value is prohibited.

(Other multiplicities such as [*] are not appropriate for a single object.).

OCL can exploit this information coming from UML models and may extend
the syntax of iterators, let-variables and tuple parts to support similar declara-
tions in OCL expressions. However, since OCL has always permitted nulls, we
must treat [?] as the default for the extended OCL declarations even though
[1] is the default for UML declarations.

3.2 Null-free Collection declarations

The ability to declare non-null variables and properties provides some utility
for safe navigation validation, but we soon hit another problem. Collection op-
erations are perhaps the most important part of OCL, and any collection may
contain none, some or many null elements. Consequently whenever we operate
on collection elements we hit the pessimistic could-be-null hazard.

Null objects can often be useful. However collections containing null are rarely
useful. The pessimistic could-be-null hazards are therefore doubly annoying for
collection elements:

— a large proportion of collection operations are diagnosed as hazardous
— the hazard only exists because the tooling fails to understand typical usage.

In order to eliminate the hazard diagnosis, we must be able to declare that a
collection is null-free; i.e. that it contains no null elements. This could be treated
as a third boolean qualifier extending the existing ordered and unique qualifiers.
We could therefore introduce the new names, NullFreeBag, NullFreeCollection,
NullFreeOrderedSet, NullFreeSequence and NullFreeSet but this is beginning to
incur combinatorial costs.

A different aspect of UML provides an opportunity for extension. UML sup-
ports bounded collections, but OCL does not, even though OCL aspires to UML

alignment. The alignment deficiency can be remedied by following a collection
declaration by an optional UML multiplicity bound. Thus Set(String) is a
short-form for Set (String) [0. .*] allowing UML bounded collections and OCL
nested collections to support e.g. Sequence (Sequence (Integer) [3]) [3] as the
declaration of a 3*3 Integer matrix.

However, this UML collection multiplicity tells us nothing about whether
elements cannot-be-null. We require an extension of the UML collection multi-
plicity to also declare an element multiplicity. Syntactically we can re-use the
vertical bar symbol to allow [x|y] to be read as ‘a collection of multiplicity x
where each element has multiplicity y’. We can now prohibit null elements and
null rows by specifying Sequence (Sequence (Integer) [3]1]) [3]1].

Finally, we are getting somewhere. A collection operation on a null-free col-
lection obviously has a non-null iterator and so the known non-null elements
can propagate throughout complex OCL expressions. Provided we use accurate
non-null and null-free declarations in our models, well-written OCL that already
avoids null hazards does not need any change. Less well written OCL has its null
hazards diagnosed.

3.3 Null-safe libraries

The OCL standard library provides a variety of useful operations and iterations.
Their return values may or may not be non-null. The library currently has only
semi-formal declarations. These lack the precision we need for null-safe analy-
sis. We will therefore consider how more formal declarations can capture the
behaviors that we need to specify.

Simple Declaration Consider the declaration
String: :toBoolean() : Boolean

Using the default legacy interpretation that anything can be null, this should be
elaborated as

String::toBoolean() : Boolean[?]
But we have an additional postcondition:
post: result = (self = ’true’)

Intuitively this assures a true/false result. But we must always consider null
and invalid carefully. If self is null, the comparison using OclAny: := returns
false, and if self is invalid the result is invalid. We are therefore able to provide
a stronger backward compatible library declaration that guarantees a non-null
result.

String::toBoolean() : Boolean[1]

We can pursue similar reasoning to provide [?] and [1] throughout the
standard library.

Complex Declaration We hit problems where the non-null-ness/null-free-ness
of a result is dependent on the non-null-ness/null-free-ness of one or more inputs.

Consider a declaration for Set: :including in which we use parameters such
as T1, c1, el to represent flexibilities that we may need to constrain.

Set(T1) [cllel]l::including(T2) (x2 : T2[e2]) : Set(T3) [c3]|e3]

The relationship between T1, T2 and T3 is not clear in the current OCL
specification. Some implementations emulate Java-style collection declarations
where the result is the modified input; T3 is therefore the same as T1, and T2
must be assignable to T1. This implementation-driven restriction is not necessary
for a declarative specification language such as OCL where we just require that
each of T1 and T2 are assignable to T3. The declarative flexibility can be captured
by a single type parameter and a direction that the most derived solution be
selected from the many possible solutions.

Set(T) [cllel]::including(x2 : T[e2]) : Set(T) [c3]le3]

The result is only null-free if the input collection is null-free and the additional
value is non-null. Therefore if el and e2 are Boolean-valued with true for [1]
(is not null) and false for [?] (may be null), e3 may be computed as:

e3 = el and e2

This computation can be included in a library model to avoid the need for
an implementation to transliterate specification words into code.
We can also compute ¢3 pessimistically as

c3.lower = cl.lower
c3.upper = if cl.upper = * then * else cl.upper+l endif

Preliminary discussions at Aachen [1] indicated limited enthusiasm for accu-
rate modeling of collection bounds in OCL, so we could just take the view that
OCL does not support bounded collections enthusiastically; The definition of c3
is then much simpler:

c3.lower = 0
c3.upper

]
*

However if we need accurate equations to avoid loss of non-null-ness precision
for library operations, the simplification of not providing similar equations for
collection bounds may prove to be a false saving.

3.4 Null-safe models

Once the standard library has accurate null-safe modeling we are just left with
the problem of user models.

For object declarations, there seems little choice but to make this part of
the user’s modeling discipline; object declarations must accurately permit or
prohibit the use of null.

For collection declarations the default may-be-null legacy behavior is mostly
wrong and for some users it may be universally wrong. We would like to pro-
vide a universal change to the default so that all collections are null-free unless
explicitly declared to be null-full. In UML, we can achieve this by defining an
OCL: :Collections: :nullFree stereotype property for a Package or Class. The
nullFree Boolean property provides a setting that is ‘inherited’ by all collection-
valued properties within the Package or Class.

UML has no support for declaring collection elements to be non-null, so
we need a further OCL::Collection: :nullFree stereotype property to define
whether an individual TypedElement has a null-free collection or not.

For disciplined modelers, the sole cost of migrating to null-safe OCL will be
to apply an OCL::Collections stereotype to each of their Packages.

Feedback from workshop UML is moving, and perhaps has already moved, to
prohibit nulls in multi-valued properties. UML-derived collections are therefore
inherently null-free and no stereotype is required. Rather the converse of a null-
full declaration is needed to declare that nulls are really required and that some
workaround for the UML prohibition is to be used.

3.5 Deep non-null analysis

Accurate non-null declarations enable WFRs to diagnose null navigation hazards
ensuring that safe navigation is used when necessary. However simple WFRs
provide pessimistic analysis.

For instance, the anObject .name navigation in the following example is safe
since it is guarded by anObject <> null

let anObject : NamedElement[?] =
in anObject <> null implies an(Object.name <> null

However a simple WFR using just anObject : NamedElement[7] diagnoses
a lack of safety because the anObject let-variable may be null. A potentially
exponential program flow analysis is needed to eliminate all possible false un-
safe diagnostics. A simpler pragmatic program flow analysis can eliminate the
common cases of an if/implies/and non-null guard.

4 Related Work

The origin and long history of null problems has been alluded to in the intro-
duction as has the mitigation for C++ and Java.

The safe navigation operator is not new since at least Groovy, Python and
Xbase provide it.

The database usage of NULL as an absence of value is in principle similar to
OCL’s use of null, however whereas use of null in OCL leads to failures, SQL is
more forgiving. This can be helpful, but also hazardous.

The possibility of safe navigation in OCL is new, or rather the pair of 7. and
?7-> operators were new when we suggested them at the Aachen workshop [1].
The utility of the [?] and [1] non-null multiplicities was also mentioned at the
Aachen workshop. The null-free declarations, stereotypes and the interaction be-
tween safe navigation and non-null multiplicities have not been presented before,
although they are available in the Mars release of Eclipse OCL [6].

5 Conclusions

We find that naive introduction of safe navigation to OCL risks just doubling
the number of arbitrary navigation operator choices for an unskilled OCL user.
These problems are soluble with tool support provided we can also solve the
problem of declaring non-null objects and null-free collections.

We take inspiration from UML multiplicity declarations to provide the nec-
essary declarations. We use stereotypes for declarations that are not inherently
supported by UML.

The cost for well-designed models may be as little as

— one stereotype per Package to specify that all of its collections are null-free
— an accurate [?] or [1] multiplicity to encode the design intent of each non-
collection Property

The benefit is that OCL navigation can be fully checked for null safety.

Acknowledgments Many thanks to Adolfo Sanchez-Barbudo Herrera for his de-
tailed review and constructive comments.

References

1. Brucker, A., Chiorean, D., Clark, T., Demuth, B., Gogolla, M., Plotnikov, D.,
Rumpe, B., Willink, E., Wolff, B.: Report on the Aachen OCL Meeting . CEUR-
WS Proceedings, Vol-1092 (2013) http://ceur-ws.org/Vol-1092/aachen.pdf

2. Ellis,M., Stroutstrup, B.: The Annotated C++ Reference Manual. (1990)

3. Hoare, T.: Null References: The Billion Dollar Mistake. QCon London (2009)

4. JSR 241: The Groovy Programming Language. (2004)

5. Using null annotations: http://help.eclipse.org/luna/index.jsp?topic=
%2Forg.eclipse.jdt.doc.user%2F tasks%2F task-using%5F null%5Fannotations.htm

6. Eclipse OCL: https://www.eclipse.org/modeling/mdt/downloads/?project=ocl

7. Object Constraint Language. Version 2.4., OMG Document Number: formal/2014-
02-03, Object Management Group (2009), http://www.omg.org/spec/OCL/2.4

8. Python Software Foundation: The Python Language Reference. 2.7.10 (2015)

9. OMG Unified Modeling Language (OMG UML), Version 2.5, OMG
Document Number: formal/15-03-01, Object Management Group (2015),
http://www.omg.org/spec/UML/2.5

10. Xbase: https://www.eclipse.org/Xtext/documentation/305%5F xbase. html#xbase-
expressions

