
Open Sound System TM

Programmer's Guide

Version 1.11

2

Copyright © 1999-2000, 4Front Technologies
Linux is a registered trademark of Linus Torvalds.
All other trademarks and copyrights referred to are the property of their respective owners.

Revision 1.0 Jan 5 2000
Written by Jeff Tranter

Revision 1.1 Jun 5 2000 by Hannu Savolainen
Revision 1.11 Nov 7 2000 by Hannu Savolainen

4Front Technologies
4035 Lafayette Place, Unit F
Culver City, CA 90232
USA
Telephone: (310) 202-8530
Fax: (310) 202-0496
E-mail: info@opensound.com
WWW: http://www.opensound.com

While every precaution has been taken in the preparation of this manual, 4Front Technologies
assumes no responsibility for errors or omissions or for damages resulting from the use of the

3

information contained herein.

4

Table of Contents

. 3

Table of Contents. 4

. 8

Introduction . 9
Background . 9
OSS API Basics. 10
Device Files Supported by OSS. 10

/dev/mixer . 11
/dev/sndstat. 11
/dev/dsp and /dev/audio. 11
/dev/sequencer. 12
/dev/music (formerly /dev/sequencer2). 12
/dev/midi . 12
/dev/dmfm . 13
/dev/dmmidi . 13

Device Numbering. 13
Programming Guidelines. 14

Use API Macros. 14
Device Numbering and Naming. 14
Endian Convention. 15
Don't Use Undefined Default Conditions. 15
Don't Try to Open the Same Device Twice. 15
Avoid Extra Features and Tricks. 16
Don't Use Undocumented Features. 16
Avoid Invalid Assumptions. 16

. 17

Mixer Programming. 18
Introduction . 18
Types of Mixer Programs. 19
Mixer Channels. 19
Querying the Capabilities of the Mixer. 21
Using the Mixer Query Interface. 21
Checking Available Mixer Channels. 21
Checking Available Recording Devices. 21
Checking if a Device is Mono or Stereo. 22

5

Checking General Capabilities of a Mixer. 22
Naming of Mixer Channels. 22
Meaning of Volume Levels. 22
Getting and Setting Volumes. 23
Selecting the Recording Sources. 23

Audio Programming . 25
Introduction . 25
General Programming Guidelines. 26
Simple Audio Programming. 28
Declarations for an Audio Program. 28
Selecting and Opening the Sound Device. 29
A Simple Recording Application. 30
Simple Playback Application. 30
Setting Sampling Parameters. 31
Selecting Audio Format. 31
Selecting the Number of Channels (Mono/Stereo). 34
Selecting Sampling Rate (speed). 34
Other Commonly Used ioctl Calls. 35
Interpreting Audio Data. 37

Mu-law (Logarithmic Encoding). 37
8-bit Unsigned. 37
16-bit Signed. 37
24 and 32 bit signet formats. 38

Encoding of Stereo Data. 39
Multiple channels. 39
Changing mixer settings for an audio device . 39
Conclusions. 40

MIDI Programming. 41
What is MIDI? . 41

Low level MIDI Programming . 42
Introduction . 42
Changing Parameters. 43

. 43

Raw Music Interface. 44
Background . 44
/dev/dmfm0 . 44
/dev/dmmidi0. 44
Applications That Use the Raw Music Interface. 44
FM Synthesizer Interface. 45

6

Introduction . 45
Data Structures. 45
FM Voice Data Structure. 46
FM Note Data Structure. 48
FM Parameter Data Structure. 49
FM Synthesizer ioctl Functions. 50
FM_IOCTL_RESET . 50
FM_IOCTL_SET_MODE. 50
FM_IOCTL_SET_VOICE. 51
FM_IOCTL_PLAY_NOTE. 51
FM_IOCTL_SET_PARAMS . 51
FM_IOCTL_SET_OPL. 51

Programming the FM Synthesizer. 51
Additional Notes on FM Programming. 54
Programming The FM Synthesizer Using SBI Files. 56
FM Synthesizer in 4-Operator Mode. 59
MIDI Interface . 61

Introduction . 61
MIDI Note Specification. 63

Reading From MIDI Instruments. 64
Reading From MIDI Files Using Midilib. 65

Music Programming. 74
Introduction . 74
Midi And Music Programming Interfaces Provided By OSS. 74
Fundamentals Of /dev/music. 74
Queues and Events. 75
MIDI Ports and Synthesizer Devices. 76

MIDI Ports . 76
Internal Synthesizers. 77
Differences Between Internal Synthesizer and MIDI Port Devices. 78
Instruments and Patch Caching. 79
Notes . 79
Voices and Channels. 80
Controlling Other Parameters. 81

Programming /dev/music and /dev/sequencer. 81
Initial Steps . 81
Opening the Device. 83
Writing Events. 84
The Minimal /dev/music Program. 84

. 86

The Virtual Mixer . 87

7

. 88

SoftOSS. 89
Introduction . 89
Technical Background. 89
Applications of SoftOSS Technology. 90
System Requirements. 90
Limitations of SoftOSS. 91
Getting SoftOSS. 91
Getting the Sound Patches. 91
Configuring SoftOSS. 91
Future Plans. 92

Advanced Programming Topics. 94
DANGER!!! . 94
Introduction . 94
Audio Internals . 94
Normal Operation When Writing to the Device. 95
Normal Operation When Reading from the Device. 96
Buffering - Improving Real-Time Performance. 97
Determining Buffering Parameters. 97
Selecting Buffering Parameters (fragment size). 99
Obtaining Buffering Information (pointers). 100
Checking for errors. 101
Non-Blocking Reads and Writes. 102
Using select. 102
Checking Device Capabilities. 103
Synchronization Issues. 104
Avoiding Blocking in Audio Operations. 104
Synchronizing External Events With Audio. 104
Synchronizing Audio With External Events. 105
Synchronizing Recording and Playback Together. 105
Implementing Real-Time Effect Processors and other Oddities. 105
Starting Audio Playback and/or Recording with Precise Timing. 106
Starting Audio Recording or Playback in Sync with /dev/sequencer or /dev/music. . . 107
Full Duplex Mode . 107
Syncronizing two separate audio devices together. 108
Accessing the DMA Buffer Directly. 108

Platform Specific Issues. 110

Appendix A - References. 111
http://www.opensound.com. 111

8

http://www.linuxdoc.org . 111
http://sound.condorow.net. 111
http://www.freshmeat.net. 111

Appendix B - General MIDI patch map. 112

Appendix C - FM Synthesizer Interface. 115

. 116

Glossary of Terms. 117

Index . 121

9

Introduction

This manual describes the Open Sound System (OSS) application programming interface. It starts
with general background information on OSS devices and programming techniques. It then gets into
a detailed description of programming the mixer, audio, MIDI, raw music and the new Virtual Mixer
and SoftOSS devices. Also covered are some advanced programming topics and platform specific
issues. The manual finishes up with references to further information and a glossary of technical
terms used in the manual.

It is assumed that the reader has OSS installed and working and has a basic familiarity with C
programming on the platform on which OSS is being used.

OSS is continuously under development, with new features being constantly added. This manual is
a work in progress that attempts to document these features. You should periodically check the
4Front Technologies web site to obtain the latest version of the manual. We also welcome comments
or corrections to the manual % please send them by e-mail to support@opensound.com .

Additional late-breaking information can be found in the Readme and other files that come with
your copy of the OSS software. For issues related to installing OSS, see the Open Sound System
Installation Guide.

Background

The Open Sound System (OSS) is a device driver for sound cards and other sound devices under
various UNIX and UNIX-compatible operating systems. OSS was derived from the sound driver
written for the Linux operating system kernel. The current version now runs on more than a dozen
operating system platforms and supports most popular sound cards and sound devices integrated on
computer motherboards.

Sound cards normally have several different devices or ports which produce or record sound. There
are differences between various cards, but most have the devices described in this section.

The digitized voice device (also referred to as a codec, PCM, DSP or ADC/DAC device) is used for
recording and playback of digitized sound.

The mixer device is used to control various input and output volume levels. The mixer device also
handles switching of the input sources from microphone, line-level input and CD input.

The synthesizer device is used mainly for playing music. It is also used to generate sound effects in
games. The OSS driver currently supports two kinds of synthesizer devices. The first is the Yamaha
FM synthesizer chip which is available on most sound cards. There are two models of this FM chip.
The Yamaha OPL-2 is a two operator version which was used in early sound cards such as the
AdLib and SoundBlaster 1 and 2. It has just 9 simultaneous voices and is not capable of producing

There is another include file for the Gravis UltraSound card, <ultrasound.h> , but normally it should1

not be required. It is not actually part of the OSS API, but a hardware specific extension to it.

10

very realistic instrument sounds. The OPL-3 is an improved version that supports 4 operator voices
which offer the ability to produce more realistic sounds. The second type of synthesizer devices are
the so-called wave table synthesizers. These devices produce sound by playing back pre-recorded
instrument samples. This method makes it possible to produce extremely realistic instrument
timbres. The Gravis UltraSound (GF1) is an example of a wave table synthesizer.

A MIDI interface is a used to communicate with devices, such as synthesizers, that use the industry
standard MIDI protocol. MIDI uses a serial interface running at 31.5 kbps which is similar to (but
not compatible with) standard PC serial ports. The MIDI interface is designed to work with on-stage
equipment like synthesizers, keyboards, stage props, and lighting controllers. MIDI devices
communicate by sending messages through a MIDI cable.

Most sound cards also provide a joystick port and some kind of interface (IDE, SCSI, or proprietary)
for a CD-ROM drive. These devices are not controlled by OSS but there are typically separate
drivers available.

OSS API Basics

The application programming interface (API) of the OSS driver is defined in the C language header
file <soundcard.h > .1

The OSS software ships with a copy of the header file in the include/sys subdirectory. You may
have older versions of the include file that are included with your operating system (Linux
distributions typically include the older OSS/Free driver, for example). It usually causes no harm
to use the older header file but you will not be able to use some of the newer features only provided
in OSS. Very old versions may also cause compatibility problems. To avoid this, you can either
point to the OSS header files when compiling applications (e.g. use the compile option
"-I/usr/lib/oss/include ") or install the header file in a standard system header file location
(e.g. /usr/include/sys).

If you get compile errors when building an application, verify that you are using the version of
<soundcard.h > supplied with OSS.

Device Files Supported by OSS

The OSS driver supports several different types of devices. These are described in the following
sections.

11

/dev/mixer

The mixer device files are used primarily for accessing the built-in mixer circuits of sound cards. A
mixer makes it possible to adjust playback and recording levels of various sound sources. This
device file is also used for selecting recording sources. Typically a mixer will control the output
levels of the digital audio and FM synthesizer and also mix it with the CD input, line level input and
microphone input sources.

The OSS driver supports several mixers on the same system. The mixer devices are named
/dev/mixer0 , /dev/mixer1 , etc. The device file /dev/mixer is a symbolic link to one of
these device files (usually the first mixer, /dev/mixer0).

/dev/sndstat

This device file is provided for diagnostic purposes, and unlike all of the other sound devices,
produces its output in human readable format. The device prints out information about all of the
ports and devices detected by the OSS driver. Running the command "cat /dev/sndstat " will
display useful information about the driver configuration. It should be noted that the output of
/dev/sndstat is not intended to be machine readable and may change without notice in future
versions of OSS.

/dev/dsp and /dev/audio

These are the main device files for digitized voice applications. Any data written to this device is
played back with the DAC/PCM/DSP device of the sound card. Reading the device returns the audio
data recorded from the current input source (the default is the microphone input).

The /dev/audio and /dev/dsp device files are very similar. The difference is that /dev/audio
uses logarithmic mu-law encoding by default while /dev/dsp uses 8-bit unsigned linear encoding.
With mu-law encoding a sample recorded with 12 or 16-bit resolution is represented by one 8-bit
byte. Note that the initial sample format is the only difference between these device files. Both
devices behave similarly after a program selects a specific sample encoding by calling ioctl . The
/dev/audio device is provided for compatibility with the sound device provided on Sun
workstations running SunOS. These device files can be used for applications such as speech
synthesis and recognition and voice mail.

Although /dev/audio provides minimal compatibility with Sun’s API, there is no support for
Sun’s ioctl() interface. OSS under Solaris emulates these calls to some degree to provide
compatibility with existing Solaris and SunOS applications, however this emulation is not officially
supported by 4Front Technologies.

The OSS driver supports several codec devices on the same system. The audio devices are named
/dev/dsp0 , /dev/dsp1 , etc. The file /dev/dsp is a symbolic link to one of these device files
(usually /dev/dsp0). A similar naming scheme is used for /dev/audio devices.

12

CAUTION
Unlike the other device files supported by OSS, both /dev/sequencer and /dev/music
accept formatted input. It is not possible, for example, to play music by just sending MIDI files to
them.

TIP
Many of the sound device files are numbered from 0 to n. It is possible to find out the proper
number by using the command "cat /dev/sndstat ". The output produced contains a section for
each device category. Devices in each category are numbered, with the number corresponding to
the number in the device file name. The numbering of devices depends on the order that the devices
have been initialized during startup of the driver. This order is not fixed, so don't make any
assumptions about device numbers.

/dev/sequencer

This device file is intended for electronic music applications. It can also be used for producing sound
effects in games. The /dev/sequencer device provides access to any internal synthesizer devices of
the sound cards. In addition, this device file can be used for accessing any external music synthesizer
devices connected to the MIDI port of the sound card as well as General MIDI daughtercards
connected to the WaveBlaster connector of many sound cards. The /dev/sequencer interface permits
control of up to 15 synthesizer chips and up to 16 MIDI ports at the same time.

/dev/music (formerly /dev/sequencer2)

This device file is very similar to /dev/sequencer . The difference is that this interface handles
both synthesizer and MIDI devices in the same way. This makes it easier to write device independent
applications than it is with /dev/sequencer . On the other hand, /dev/sequencer permits
more precise control of individual notes than /dev/music , which is based on MIDI channels.

/dev/midi

These are low level interfaces to MIDI bus ports that work much like TTY (character terminal)
devices in raw mode. The device files are not intended for real-time use % there is no timing
capability so everything written to the device file will be sent to the MIDI port immediately. These
devices are suitable for use by applications such as MIDI SysEx and sample librarians.

There device files are named /dev/midi 00, /dev/midi 01, etc. (note the two digit device
numbering). The device /dev/midi is a symbolic link to one of the actual device files (typically
/dev/midi 00).

13

/dev/dmfm

This is a raw interface to FM synthesizers. It provides low level register access to the FM sound
chip. Devices are named /dev/dmfm0, /dev/dmfm1, etc.

/dev/dmmidi

This is the raw interface to MIDI devices. It provides direct TTY-like access to the MIDI bus for
specialized applications. Devices are named /dev/dmmidi0, /dev/dmmidi1, etc.

Device Numbering

The OSS device files share the same major device number. One the Linux platform the major device
number is 14; on other operating systems it is usually something else. The minor number assignment
is given in table 1 below.

The four least significant bits of the minor number are used to select the device type or class. If there
is more than one device in a class the upper 4 bits are used to select the device. For example, the
class number of /dev/dsp is 3. The minor number of the first device, /dev/dsp 0, is 3 and for
the second device, /dev/dsp 1, is 19 (16 + 3).

Table 1 - OSS Device Numbers (Linux platform)

Major Minor Name

14 0 /dev/mixer0 .. /dev/mixer4

14 1 /dev/sequencer

14 2 /dev/midi00 .. /dev/midi04

14 3 /dev/dsp0 .. /dev/dsp15

14 4 /dev/audio0 .. /dev/audio15

14 5 /dev/dspW0 .. /dev/dspW15

14 6 /dev/sndstat

14 7 /dev/dmfm0

14 8 /dev/music

- - /dev/audio (link to /dev/audio0)

- - /dev/audioctl (link to /dev/mixer0)

- - /dev/dmdsp0 (link to /dev/dsp)

- - /dev/dmmidi0 (link to /dev/midi)

14

- - /dev/dsp (link to /dev/dsp0)

- - /dev/dspW (link to /dev/dspW0)

- - /dev/dspdefault (link to /dev/dsp0)

- - /dev/midi (link to /dev/midi00)

- - /dev/mixer (link to /dev/mixer0)

- - /dev/sequencer2 (link to /dev/music)

- - mixer (link to /dev/mixer0)

Programming Guidelines

One of the main goals of the OSS API is full source code portability of applications between systems
supporting OSS. This is possible if certain guidelines are followed when designing and programming
the audio portion of an application. It is even more important that the rest of your application is
written in a portable manner. In practice, most portability problems in the current sound applications
written for Linux are in the program modules that perform screen handling. Sound related portability
problems are usually just endian problems.

The term portability doesn't just refer to the program's ability to work on different machines running
different operating systems. It also includes the ability to work with different sound hardware. This
is even more important than operating system portability since differences between the current and
future sound devices are likely to be relatively large. OSS makes it possible to write applications
which work with all possible sound devices by hiding device specific features behind the API. The
API is based on universal physical properties of sound and music rather than hardware specific
properties.

This section lists a number of areas to watch for that will help improve the likelihood that OSS
applications are portable.

Use API Macros

The macros defined in <soundcard.h > provide good portability since possible future changes
to the driver's internals will be handled transparently by the macros. It is possible, for example, to
use the /dev/sequencer device by formatting the event messages in the application itself.
However it is not guaranteed that this kind of application works in all systems. You should use the
macros provided for this purpose in the sound header file.

Device Numbering and Naming

15

In some cases there might be several sound devices in the same system (e.g. a sound card and
on-board audio). In such cases the user may have valid reasons for using different devices with
different applications. This is not a major problem with open source applications where the user has
the freedom to change device names in source code. However, the situation is different when the
source code for the program is not available. In either case it is preferable that the user can specify
the devices in the application's preferences or configuration file. The same is true with MIDI and
synthesizer numbers used in /dev/sequencer and /dev/music . Design your application so
that it is possible to select the device numbers. In particular, don't hard code your program with
device names which have a numeric suffix. For example, it is preferable to program your application
to use /dev/dsp and not /dev/dsp 0. While /dev/dsp is usually a symbolic link which points
to /dev/dsp 0, the user may have reasons to change audio applications to use /dev/dsp 1 by
changing the link. In this case an application that uses /dev/dsp 0 directly will use the incorrect
device.

Endian Convention

This is a serious problem with applications using 16-bit audio sampling resolution. Most PC sound
cards use little-endian encoding of samples. This means that there are no problems with audio
applications on little-endian machines such as Intel x86 and Alpha AXP. In these environments it
is possible to represent 16-bit samples as 16-bit integers (signed short). This is also not a problem
in big-endian machines which have built-in big-endian codec devices. However, the endian
convention is a big problem in mixed endian systems. For example, many RISC systems use
big-endian encoding but it is possible to use little-endian ISA or PCI sound cards with them. In this
case, using 16-bit integers (signed short) directly will produce just white noise with a faint audio
signal mixed in with it. This problem can be solved if the application properly takes care of the
endian convention using standard portability techniques.

Don't Use Undefined Default Conditions

For most parameters accepted by the OSS driver there is a defined default value. These defined
default values are listed in this manual at the point where the specific features are discussed.
However, in some cases the default condition is not fixed but depends on characteristics of the
machine and the operating system where the program runs. For example, the timer rate of
/dev/sequencer is fixed and depends on the system timer frequency parameter (HZ). Usually
the timer frequency is 100 Hz which gives a timer resolution of 0.01 seconds. However there are
systems where the timer frequency is 60 or 1024 Hz. Many programs assume that the tick interval
is always 0.01 seconds and will not work on these systems. The proper way to handle this kind of
variable condition is to use the method defined for querying the default value.

Don't Try to Open the Same Device Twice

Most device files supported by the OSS driver have been designed to be used exclusively by one
application process (/dev/mixer is the only exception). It is not possible to re-open a device
while the same device is already open by another process. Don't try to overcome this situation by

 Using fork is acceptable if only one process actually uses the device. The same is true for multi-2

threaded programs.

 This is a general problem, not one that just applies to sound applications. One of the original design3

tenets of UNIX was that each program should do exactly one thing well.

16

using fork or other tricks. This may work in some situations, but in general the result is undefined.2

Avoid Extra Features and Tricks

Think carefully before adding a new feature to your application. A common problem in many
programs is that there are lot of unnecessary features which are untested and just cause problems3

when used. A common example of an extra feature is including a mixer interface in an audio
playback application. It is very likely that the feature will be poorly implemented and cause troubles
on some systems which are different from the author's. In this case a separate mixer application is
probably a more flexible and reliable tested solution.

Don't Use Undocumented Features

There are features that are defined in <soundcard.h > but which are not documented here. This
features are left undocumented for a reason. Usually they are obsolete features which are no longer
supported and will disappear in future driver versions. Some of them are features which have not yet
been fully tested and may cause problems on some systems. A third possibility is there are
undocumented features which are device dependent and work with only few devices (which are often
obsolete). Therefore, avoid the temptation of using features just because they were found when
browsing <soundcard.h >.

Avoid Invalid Assumptions

There are many common assumptions which make programs non-portable or highly hardware
dependent. The following is a list of things that are commonly misunderstood.

Mixer

Not all sound cards have a mixer. This is true with some older sound cards, some sound cards that
are not yet fully supported by the OSS driver, and some high end professional ("digital only")
devices which are usually connected to an external mixer. Your program will not work with these
cards if it requires the availability of a mixer.

Not all mixers have a main volume control. For some reason almost all mixer programs written for
the OSS API make this assumption.

The set of available mixer controls is not fixed, but varies between devices. Your application should
query the available channels from the driver before attempting to use them (alternatively the

17

application can just selectively ignore some error codes returned by the mixer API but this is a really
crude and semantically incorrect method).

Try to avoid automatic use of the main volume mixer control. This control affects the volume of all
audio sources connected to the mixer. Don't use it for controlling the volume of audio playback since
it also affects the volume of an audio CD that may be playing in the background. Your program
should use only the PCM channel to control the volume of audio playback.

There is absolutely no connection between the device numbers of /dev/dsp# and /dev/mixer#. In the
other words /dev/mixer1 is NOT the mixer device that controls volume of /dev/dsp1.

/dev/dsp and /dev/audio

The default audio data format is 8 kHz/8-bit unsigned/mono (/dev/dsp) or 8 kHz/mu-Law/mono
(/dev/audio). However, this is not always true. Some devices simply don't support the 8 kHz
sampling rate, mono mode or 8-bit/mu-Law data formats. An application which assumes these
defaults will produce unexpected results (such as 144 dB noise) with some hardware (such as future
24-bit only sound hardware).

/dev/sequencer and /dev/music

As mentioned earlier, don't assume that the timer rate of /dev/sequencer is 100 Hz (0.01
second). This is not true on all platforms % Linux on Alpha uses a much higher system clock rate,
for example.

Set all of the timing parameters of /dev/music before using the device. There are no globally
valid default values.

Don't assume that there is always at least one MIDI port and/or one synthesizer device. There are
sound cards which have just a synthesizer or just a MIDI port.

Don't try to use a MIDI port or synthesizer device before first checking that it exists.

18

NOTE
It is possible that no mixers are present on the system. Some sound cards simply don't have any
mixer functionality. This is common with some old sound cards. There are also some high end
professional sound cards that don't have a mixer. Don't assume that there is a mixer in every
system. All systems have /dev/mixer0 but the ioctl calls will fail and set errno to
ENXIO if no mixer is present. Your program should be prepared to handle ENXIO returned by
any of the ioctl calls.

There is no relationship between the mixer and audio device numbers. Even it may seem that
/dev/mixer1 controls the volume of /dev/dsp1 this is not an correct observation. The
right way to change playback/recording volumes on audio devices will be given in the audio
programming section.

NOTE
Changes to the mixer settings will remain active until the system is rebooted or changed again. The
driver doesn't change the mixer settings unless instructed to do so by commands.

Mixer Programming

Introduction

Most sound cards have some kind of mixer which can be used for controlling volume levels. The
OSS API defines a device file, /dev/mixer , which can be used to access the mixer functions of
the card. It is possible that there is more than one mixer if there are several sound cards installed on
the system. The actual mixer device files are /dev/mixer 0, /dev/mixer1 , etc. with
/dev/mixer being just a symbolic link to one of these device files (usually /dev/mixer0 , but
the user has the freedom to assign the link differently).

The OSS mixer API is based on channels. A mixer channel is a numbered object which represents
a physical control or slider of the mixer. Each of the channels have independently adjustable values
which may vary between 0 (off) and 100 (maximum volume). Most of the channels are stereo
controls, so it is possible to set values for both stereo channels separately which permits the control
of balance. The mixer API contains a few ioctl calls for setting and getting the values of these
mixer channels.

In addition to volumes, the mixer API also controls the selection of recording sources. With most
sound cards it is possible to record simultaneously only from one source, while a few cards (such
as the PAS16) allow several recording sources to be active at the same time. After a system reset the
microphone input is usually selected as the recording source (but there is no guarantee that this is
always true).

The third class of mixer ioctl calls are functions used for querying the capabilities of the mixer.

19

With these calls it is possible to check which mixer channels are actually present and which can be
used as input sources.

NOTE
The set of available mixer channels is not fixed since different sound cards have different
mixers. For this reason it is important to check which channels are available before attempting
to use the mixer. It is possible that even the main volume setting is missing. The driver will
return -1 and set errno to the error code EINVAL if a nonexistent mixer channel is assigned.

 Mixer channels are bound to pins of the mixer chip. Some mixer chips are used in cards made by
several manufacturers. It is possible that some manufacturers have connected the mixer chip in a
different way than the others. In this case some mixer channels may have a different meaning than
defined below.

It is recommended that mixer functionality is not embedded in programs whose main function is
something else (for example, audio). In some sound cards the hardware level mixer implementation
may differ significantly from the normal situation. In this case, only a mixer program tailored for that
card works properly. Adding mixer functionality to programs may cause unexpected support
problems in future.

Types of Mixer Programs

The mixer API of OSS permits writing of generic mixer programs which work with almost any
sound card. This is possible only if the program uses the query functions of the API to check the
capabilities of the device before trying to use it.

It is also possible to design a mixer so that it works best with a particular sound card. In this way it
is easier to design a nice looking GUI which matches the hardware properly. Even in this case it is
a good idea to check that the required mixer channels are actually present by using the query ioctl
functions defined below. In this case you should clearly indicate in the documentation for the
program that it requires a particular sound card.

Mixer Channels

The mixer channels have an unique number between 0 and 30. The file <soundcard.h > defines
some mnemonic names for the channels. Note that these are the current ones, new ones could be
added in the future.

The macro SOUND_MIXER_NRDEVICES gives the number of channels known when this version
of <soundcard.h > was written. A program should not try to access channels greater or equal than
SOUND_MIXER_NRDEVICES.

20

The channels currently known by the driver are shown in table 2.

Table 2 - Mixer Channels

Macro Description

SOUND_MIXER_VOLUME Master output level (headphone/line out volume)

SOUND_MIXER_TREBLE Treble level of all of the output channels

SOUND_MIXER_BASS Bass level of all of the output channels

SOUND_MIXER_SYNTH Volume of the synthesizer input (FM, wavetable). In some cases may be
connected to other inputs too.

SOUND_MIXER_PCM Output level for the audio (Codec, PCM, ADC) device (/dev/dsp and
/dev/audio)

SOUND_MIXER_SPEAKER Output volume for the PC speaker signals. Works only if the speaker
output is connected directly to the sound card. Doesn't affect the built in
speaker, just the signal which goes through the sound card. On some
sound cards this is actually a generic mono input which may control some
other function. For example, in the GUS Max this control adjusts the
volume of the microphone signal routed to line out.

SOUND_MIXER_LINE Volume level for the line in jack

SOUND_MIXER_LINE1
SOUND_MIXER_LINE2
SOUND_MIXER_LINE3

Generic mixer channels which are used in cases when the precise
meaning of a physical mixer channel is not known. The actual meaning of
these signals is vendor defined. Usually these channels are connected to
the synth, line-in and CD inputs of the card but the order of the
assignment is not known to the driver.

SOUND_MIXER_MIC Volume for the signal coming from the microphone jack. In some cases
his signal controls only the recording volume from the microphone and
on some cards it controls the volume of the microphone signal routed to
the output of the card too. In some cards the microphone is not connected
to the true microphone input at all but to one of the line level inputs of the
mixer chip.

SOUND_MIXER_CD Volume level for the input signal connected to the CD audio input.

SOUND_MIXER_IMIX A recording monitor channel on the PAS16 and some other cards. It
controls the output (headphone jack) volume of the selected recording
sources while recording. This channel only has effect when recording.

SOUND_MIXER_ALTPCM Volume of the alternate codec device (such as the SoundBlaster
emulation of the PAS16 cards).

SOUND_MIXER_RECLEV Global recording level setting. In the SoundBlaster16 card this controls
the input gain, which has just 4 possible levels.

21

int mask;
if (ioctl (mixer_fd, SOUND_MIXER_READ_xxxx, &mask) == -1) {
 /* Mixer capability is not available - handle this gracefully ... */
}

It is important to remember that the exact effect of mixer channels may be slightly different in some
sound cards. For this reason, try to avoid too specific descriptions of the mixer channels in
documentation of a mixer program.

Querying the Capabilities of the Mixer

The mixer interface of OSS has been designed so that it is possible to compile a mixer program on
one system and to use it on another system with different sound hardware. This is possible only if
the mixer program follows some guidelines. It has to query for the hardware configuration before
taking any other actions with the mixer interface. It does no harm if the program tries to change the
volume of a channel without first querying if the channel is valid, since the ioctl call will return
an error if there is something wrong with the request. However, if a mixer program shows mixer
channels that are not valid for the sound hardware, the user may become confused. The ioctl calls
described in the next section give programs a way to determine the correct sound hardware
capabilities.

Using the Mixer Query Interface

All query functions of the mixer API return a bit mask in an integer variable which is passed as an
argument to the ioctl call. The following code fragment shows the generic method used for the
calls described in the following sections.

Listing 1 - Checking for Device Capabilities

It is important to note that any ioctl call for the mixer API may return -1 and set the errno
variable to ENXIO if no mixer at all is present (it is always possible to open /dev/mixer 0, even
when no mixer is available). The meaning of the bits of the mask are defined in later sections.
Testing the bit corresponding to a mixer channel can be done using the expression "mask & (1
<< channel_no) ". The channel_no parameter may be one of the SOUND_MIXER_ macros
defined earlier or an integer value between 0 and SOUND_MIXER_NRDEVICES. The latter
alternative is useful for writing a mixer that dynamically adapts to the capabilities of any card.

Checking Available Mixer Channels

The ioctl SOUND_MIXER_READ_DEVMASK returns a bit mask in the variable pointed to by the
argument (mask in the previous example). To see if a particular mixer channel is supported you
need to test if the bit corresponding to the channel number is set. Any attempt to access undefined

22

mixer channels using channel specific ioctl calls will return an error (errno will be set to
EINVAL).

Checking Available Recording Devices

The ioctl SOUND_MIXER_READ_RECMASK returns a bit mask where each bit represents a mixer
channel. The channels having their corresponding bit set may be used as a recording channel.

Checking if a Device is Mono or Stereo

Most mixer devices have stereo capability, making it possible to independently set the volumes for
both the left and right stereo channels of the mixer channel. However, some devices are mono only
and in this case just the left channel volume is used. The ioctl call
SOUND_MIXER_READ_STEREODEVS returns a bit mask where a 1 indicates that the
corresponding channel supports stereo. A mixer program should use this information to decide if it
should draw sliders for both stereo channels or not. Otherwise, having a stereo control displayed for
a mono channel may confuse the user of the application.

Checking General Capabilities of a Mixer

The ioctl call SOUND_MIXER_READ_CAPS returns a bit mask which describes general
capabilities of the mixer. These capabilities are not related to any particular mixer channel. Currently
just one mixer capability is defined. The bit SOUND_CAP_EXCL_INPUT is set to 1 if only one
mixer channel can be selected as a recording source at any one time. If the bit is 0 then it is possible
to have several recording devices selected at the same time. In practice, checking this bit is not
crucial since the ioctl call used for selecting the recording channel handles the two different
modes of operation.

Naming of Mixer Channels

The file <soundcard.h > defines two sets of printable names for the mixer channels. These names
should be used when labelling or naming the mixer channels in application programs. The macro
SOUND_DEVICE_LABELS contains a list of printable strings which can be used, for example, to
label the sliders for the channels. You could access the names by defining a variable as:

const char *labels[] = SOUND_DEVICE_LABELS;

For example, labels[SOUND_MIXER_VOLUME] contains a textual label ("Vol") for the main
volume channel.

The macro SOUND_DEVICE_NAMES is similar but it contains names to be used for features such
as parsing command options. The names in this macro don't contain blanks or upper case letters.

23

NOTE
The SOUND_MIXER_WRITE ioctl returns the modified volume in the argument used in the call.
A temporary variable should be used as the argument, otherwise the volume will slide down on each
access.

Meaning of Volume Levels

The OSS driver specifies volume levels using integer values from 0 to 100. The value 0 means
minimum volume (off) and 100 means maximum volume.

Most mixers have anywhere from 3 to 8 bits of accuracy for controlling the volume at the hardware
level. The OSS driver scales between the local (0-100) and hardware defined volume. Since this
scaling is not exact, the application should be careful when using the volume returned by the ioctl
calls. If the application writes the volume and then reads it back, the returned volume is usually
slightly different (smaller) than the requested one. If the write-read sequence is repeated several
times, the volume level slides to zero even if the application makes no changes itself. It is
recommended, therefore, that the application reads the volume just during initialization and ignores
the volume returned later.

Getting and Setting Volumes

An application program can read and/or write the volume setting of a mixer device by calling the
ioctl functions SOUND_MIXER_READ and SOUND_MIXER_WRITE. The mixer channel is given
as an argument to the macro. The channel number may be one of the channel identifiers defined in
<soundcard.h > or an integer between 0 and SOUND_MIXER_NRDEVICES. For example, the
following call reads the current volume of the microphone input:

int vol;
if (ioctl(mixer_fd, SOUND_MIXER_READ(SOUND_MIXER_MIC), &vol) == -1) {
 /* An undefined mixer channel was accessed... */
}

The program should check if an error was returned from the ioctl call. The driver will return -1
and set errno if the mixer channel is not known or if there is no mixer at all.

The volumes for both stereo channels are returned in the same integer variable. The least significant
byte gives volume for the left channel and the next 8 bits for the right channel. The upper 16 bits are
undefined and should be ignored. For mono devices just the left channel value is valid (the right
channel value is set to the left channel value by the driver).

The volume setting can be altered by using the ioctl SOUND_MIXER_WRITE. It works just like
SOUND_MIXER_READ, but in addition it alters the actual hardware volume of the channel. Note
that this call also returns the new volume in the variable passed as an argument to the ioctl call.
In some cases the value may be slightly different from the value passed to the call.

24

Selecting the Recording Sources

The OSS driver has two calls for selecting recording sources. In addition, the
SOUND_MIXER_READ_RECMASK returns the devices which can be used as recording devices.

The ioctl SOUND_MIXER_READ_RECSRC returns a bit mask having a bit set for each of the
currently active recording sources. The default is currently the microphone input but the application
should not assume this.

The SOUND_MIXER_WRITE_RECSRC ioctl can be used to alter the recording source selection. If
no bits are on, the microphone input will be used.

Some cards, such as the SoundBlaster Pro, only allows one active input source at a time. The driver
correctly handles requests for invalid recording source selections and returns a valid setting. A mixer
program should always check the recording mask after changing it. It should also update the display
if the returned mask is something other than the requested one.

25

Audio Programming

Introduction

Digital audio is the most common method used to represent sound inside a computer. In this method,
sound is stored as a sequence of samples taken from an audio signal at constant time intervals. A
sample represents the volume of the signal at the moment when it was measured. In uncompressed
digital audio, each sample requires one or more bytes of storage. The number of bytes required
depends on the number of channels (mono, stereo) and sample format (8 or 16 bits, mu-Law, etc.).
The time interval between samples determines the sampling rate, usually expressed in samples per
second or Hertz. Commonly used sampling rates range from 8 kHz (telephone quality) to 48 kHz
(DAT tape). With the latest professional devices you can get as high as 96 kHz (DVD audio).

The physical devices used in digital audio are known as an ADC (Analog to Digital Converter) and
DAC (Digital to Analog Converter). A device containing both ADC and DAC is commonly known
as a codec. The codec device used in SoundBlaster cards is often referred to as a DSP or Digital
Signal Processor. Strictly speaking, this term is incorrect since true DSPs are powerful processor
chips designed for signal processing applications rather than just a codec.

The sampling parameters affect the quality of the sound which can be reproduced from the recorded
signal. The most fundamental parameter is the sampling rate which limits the highest frequency than
can be stored. Nyquist's Sampling Theorem states that the highest frequency that can be reproduced
from a sampled signal is at most half of the sampling frequency. For example, an 8 kHz sampling
rate permits recording of signals in which the highest frequency is less than 4 kHz. Higher frequency
signals must be filtered out before feeding them to a DAC.

The encoding format (or sample size) limits the dynamic range of the recorded signal (the difference
between the faintest and the loudest signal that can be recorded). Theoretically the maximum
dynamic range of a signal is 6 dB for each bit of sample size . This means, for example, that an 8-bit
sample size gives dynamic range of 48 dB while 16-bit resolution can achieve 96 dB.

There is a tradeoff with sound quality. The number of bytes required to store an audio sequence
depends on the sampling rate, number of channels, and sampling resolution. For example, storing
one second of sound with one channel at an 8 kHz sample rate and 8-bit sample size take 8000 bytes
of memory. This requires a data rate of 64 kbps, equivalent to one ISDN B channel. The same sound
stored as 16-bit 48 kHz stereo samples takes 192 kilobytes. This is a 1.5 Mbps data rate, roughly
equivalent to a T1 or ISDN primary rate interface.

Looking at it another way, at the higher data rate 1 megabyte of memory can store just 5.46 seconds
of sound. With 8 kHz, 8-bit sampling the same megabyte of memory can hold 131 seconds of sound.
It is possible to reduce memory and communication costs by compressing the recorded signal but
this is beyond the scope of this document.

26

OSS provides three kinds of device files for audio programming. The only difference between the
devices is the default sample encoding used after opening the device. The /dev/dsp device uses
8-bit unsigned encoding while /dev/dspW uses 16-bit signed little-endian (Intel) encoding and
/dev/audio uses logarithmic mu-law encoding. There are no other differences between the
devices. All of them work in 8 kHz mono mode after opening them. It is possible to change sample
encoding by using ioctl calls, after which all of the device files behave in a similar way. However,
it is recommended that the device file be selected based on the encoding to be used. This gives the
user more flexibility in establishing symbolic links for these devices.

In short, it is possible to record from these devices using the normal open , close , read and
write system calls. The default parameters of the device files (discussed above) have been selected
so that it is possible to record and play back speech and other signals with relatively low quality
requirements. It is possible to change many parameters of the devices by calling the ioctl
functions defined later. All codec devices have the capability to record or playback audio. However,
there are devices which don't have recording capability at all. Most audio devices have the capability
of working in half duplex mode which means that they can record and play back but not at the same
time. Devices having simultaneous recording and playback capability are called full duplex.

The simplest way to record audio data is to use standard UNIX commands such as cat and dd. For
example "cat /dev/dsp >xyz " records data from the audio device to a disk file called xyz
until the command is killed (e.g. with Ctrl-C). The command "cat xyz >/dev/dsp " can be
used to play back the recorded sound file (note that you may need to change the recording source
and level using a mixer program before recording to disk works properly).

Audio devices are always opened exclusively. If another program tries to open the device when it
is already open, the driver returns immediately with an error (EBUSY).

General Programming Guidelines

It is highly recommended that you carefully read the following notes and also the Programming
Guidelines chapter of the Introduction section. These notes are likely to prevent you from making
the most common mistakes with the OSS API. At the very least you should read them if you have
problems in getting your program to work.

This section lists a number of things that must be taken into account before starting programming
digital audio. Many of the features referred to in these notes will be explained in more detail later
in this document.

Avoid extra features and tricks. They don't necessarily make your program better but may make it
incompatible with future devices or changes to OSS.

Open the device files using O_RDONLY or O_WRONLY flags whenever it is possible. The driver uses
this information when making many optimizing decisions. Use O_RDWR only when writing a
program which is going to both record and play back digital audio. Even in this case, try to find if

27

it is possible to close and reopen the device when switching between recording and playback.

Beware of byte order (endian convention) issues with encoding of 16-bit data. This is not a problem
when using 8-bit data or normal 16-bit sound cards in little-endian (Intel) machines. However, byte
order is likely to cause problems in big-endian machines (68k, PowerPC, SPARC, etc.). You should
not blindly try to access 16-bit samples as signed short .

The default recording source and recording level are undefined when an audio device is opened. You
should inform the user about this and instruct them to use a mixer program to change these settings.
It is possible to include mixer features in a program which works with digital audio, but it is not
recommended since it is likely to make your program more hardware dependent. Mixers operate
differently and in fact may not be present at all.

Explicitly set all parameters your program depends on. There are default values for all parameters
but it is possible that some future devices may not support them. For example, the default sampling
speed (8 kHz) or sampling resolution (8-bit) may not be supported by some high end professional
devices.

Always check if an error code (-1) is returned from a system call such as ioctl . This indicates that
the driver was not able to execute the request made by your program.

In most cases ioctl modifies the value passed in as an argument. It is important to check this value
since it indicates the value that was actually accepted by the device. For example, if the program
requests a higher sampling rate than is supported by the device, the driver automatically uses the
highest possible speed. The value actually used is returned as the new value of the argument. As
well, the device may not support all possible sampling rates but in fact just a few of them. In this
case the driver uses the supported sampling rate that is closest to the requested one.

Set sampling parameters always so that number of channels (mono/stereo) is set before selecting
sampling rate (speed). Failing to do this will make your program incompatible with cards such as
the SoundBlaster Pro which supports 44.1 kHz in mono but just 22.05 kHz in stereo. A program
which selects 44.1 kHz speed and then sets the device to stereo mode will incorrectly believe that
the device is still in 44.1 kHz mode when actually the speed is decreased to 22.05 kHz.

If examining an older program as an example, make sure that it follows these rules and that it
actually works. Many old programs were made for early prototype versions of the driver and they
are not compatible with later versions (2.0 or later).

Avoid writing programs which work only in 16-bit mode since some audio devices don't support
anything other than 8-bit mode. It is relatively easy to write programs so that they are capable of
output both in 8 and 16-bit modes. This makes the program usable for other than 16-bit sound card
owners. At least you should check that the device supports 16-bit mode before trying to output 16-bit
data to it. 16-bit data played in 8-bit mode (and vice versa) just produces a loud annoying noise.

28

Don't try to use full duplex audio before checking that the device actually supports full duplex mode.

Always read and write full samples. For example, in 16-bit stereo mode each sample is 4 bytes long
(two 16-bit sub-samples). In this case the program must always read and write multiples of 4 bytes.
Failing to do so will cause lost sync between the program and the device sooner or later. In this case
the output and input will be just noise or the left and right channels will be reversed.

Avoid writing programs which keep audio devices open when they are not required. This prevents
other programs from using the device. Implement interactive programs so that the device is opened
only when user activates recording and/or playback or when the program needs to validate sampling
parameters (in this case it should handle EBUSY situations intelligently). However, the device can
be kept open when it is necessary to prevent other programs from accessing the device.

Always check for and display error codes returned by calls to the driver. This can be done using
perror , strerror or some other standard method which interprets the error code returned in
errno . Failing to do this makes it very difficult for the end user to diagnose problems with your
program.

Simple Audio Programming

For simplicity, recording and playback will be described separately. It is possible to write programs
which record and play back audio simultaneously but the techniques for doing this are more complex
and so will be covered in a later section.

Declarations for an Audio Program

All programs using the OSS API should include <soundcard.h > which is a C language header
file containing the definitions for the API. The other header files to be included are <ioctl.h >,
<unistd.h > and <fcntl.h >. Other mandatory declarations for an audio application are a file
descriptor for the device file and a program buffer which is used to store the audio data during
processing by the program. The following is an example of declarations for a simple audio program:

29

/*
 * Standard includes
 */
#include <ioctl.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/soundcard.h>

/*
 * Mandatory variables.
 */
#define BUF_SIZE 4096
int audio_fd;
unsigned char audio_buffer[BUF_SIZE];

Listing 2 - Definitions for an Audio Program

In the above, the BUF_SIZE macro is used to define size of the buffer allocated for audio data. It
is possible to reduce the system call overhead by passing more data in each read and write call.
However, shorter buffers give better results when recording. The effect of buffer size will be covered
in detail in the section Improving Real Time Performance. Buffer sizes between 1024 and 4096 are
good choices for normal use.

Selecting and Opening the Sound Device

An audio device must be opened before it can be used. As mentioned earlier, there are three possible
device files which differ only in the default sample encoding format they use (/dev/dsp used 8-bit
unsigned, /dev/dspW uses 16-bit signed little-endian and /dev/audio uses mu-law). It is
important to open the right device if the program doesn't set the encoding format explicitly.

The device files mentioned above are actually just symbolic links to the actual device files. For
example, /dev/dsp normally points to /dev/dsp 0, which is the first audio device detected on
the system. The user has the freedom to set the symbolic links to point to other devices if it produces
better results. It is good practice to always uses the symbolic link name (e.g. /dev/dsp) and not
the actual device name (e.g. /dev/dsp 0). Programs should access the actual device files only if
the device name is made easily configurable.

It is recommended that the device file is opened in read only (O_RDONLY) or write only
(O_WRONLY) mode. Read write mode (O_RDWR) should be used only when it is necessary to record
and play back at the same time (full duplex mode).

The following code fragment can be used to open the selected device defined as DEVICE_NAME).
The value of open_mode should be O_WRONLY, O_RDONLY or O_RDWR. Other flags are undefined
and must not be used with audio devices.

Listing 3 - Opening a Device File

30

if ((audio_fd = open(DEVICE_NAME, open_mode, 0)) == -1) {
 /* Open of device failed */
 perror(DEVICE_NAME);
 exit(1);
}

int len;
if ((len = read(audio_fd, audio_buffer, count)) == -1) {
 perror("audio read");
 exit(1);
}

It is recommended that programs display the error message returned by open using standard
methods such as perror or strerror . This information is likely to be very important to the
user or support group trying to determine why the device cannot be opened. There is no need to
handle the various error messages differently. Only EBUSY (Device busy) can be handled by the
program by trying to open the device again after some time (although it is not guaranteed that the
device will ever become available).

A Simple Recording Application

Writing an application which reads from an audio device is very easy when the recording speed
is relatively low, the program doesn't perform time consuming computations, there are no strict
real-time response requirements. Solutions to handle exceptions to this case will be presented
later in this document. All the program needs to do is to read data from the device and to process
or store it in some way. The following code fragment can be used to read data from the device:

Listing 4 - Sound Recording

In the above example, variable count defines the number of bytes the program wants to read from
the device. It must be less or equal to the size of audio_buffer . In addition, it must always be
an integer multiple of the sample size. Using an integer power of 2 (i.e. 4, 8, 16, 32, etc.) is
recommended as this works best with the buffering used internally by the driver.

The number of bytes recorded from the device can be used to measure time precisely. The audio data
rate (bytes per second) depends on sampling speed, sample size and number of channels. For
example, when using 8 kHz 16-bit stereo sampling the data rate is 8000 * 2 * 2 = 32000
bytes/second. This is actually the only way to know when to stop recording. It is important to notice
that there is no end of file condition defined for audio devices.

An error returned by read usually means that there is a (most likely permanent) hardware error or
that the program has tried to do something which is not possible. In general it is not possible to
recover from errors by trying again, although closing and reopening the device may help in some
cases.

Simple Playback Application

A simple playback program works exactly like a recording program. The only difference is that a
playback program calls write .

31

NOTE
It is important to always set these parameters in the above order. Setting sampling rate before
the number of channels doesn't work with all devices.

Setting Sampling Parameters

There are three parameters which affect the sound quality (and therefore memory and bandwidth
requirements) of sampled audio data. These are:
& sample format (sometimes called as number of bits),
& number of channels (mono or stereo), and
& sampling rate (speed).

It is possible to change sampling parameters only between open and the first read , write or other
ioctl call made to the device. The effect of changing sampling parameters when the device is
active is undefined. The device must be reset using the ioctl SNDCTL_DSP_RESET before it can
accept new sampling parameters.

Selecting Audio Format

Sample format is an important parameter which affects the quality of audio data. The OSS API
supports several different sample formats but most devices support just a few of them. The
<soundcard.h > header file defines the following sample format identifiers:

Table 3 - Sound Sample Formats

Name Description

AFMT_QUERY Not an audio format but an identifier used when querying the current audio
format.

AFMT_MU_LAW Logarithmic mu-law audio encoding.

AFMT_A_LAW Logarithmic A-law audio encoding (rarely used)

AFMT_IMA_ADPCM A 4:1 compressed format where a 16-bit audio sequence is represented using the
average of 4 bits per sample. There are several different ADPCM formats and this
one is defined by the Interactive Multimedia Association (IMA). The Creative
ADPCM format used by the SoundBlaster 16 is not compatible with this one.

AFMT_U8 The standard unsigned 8-bit audio encoding used in PC soundcards.

AFMT_S16_LE The standard 16-bit signed little-endian (Intel) sample format used in PC
soundcards.

AFMT_S16_BE Big-endian (M68K, PowerPC, SPARC, etc.) variant of the 16-bit signed format.

AFMT_S16_NE 16-bit signed format in machine’s native endian convention.

AFMT_S8 Signed 8-bit audio format.

32

AFMT_S32_LE Signed little-endian 32-bit format. Used for 24-bit audio data where the data is
stored in the 24 most significant bits and the least significant 8 bits are not used
(should be set to 0).

AFMT_S32_BE Signed big-endian 32-bit format. Used for 24-bit audio data where the data is
stored in the 24 most significant bits and the least significant 8 bits are not used
(should be set to 0).

AFMT_U16_LE Unsigned little-endian 16-bit format.

AFMT_U16_BE Unsigned big-endian 16-bit format.

AFMT_MPEG MPEG MP2/MP3 audio format (currently not supported).

It is important to realize that for most devices just the 8-bit unsigned format (AFMT_U8) is supported
at the hardware level (although there are high-end devices which support only 16-bit formats). Other
commonly supported formats are AFMT_S16_LE and AFMT_MU_LAW. With many devices
AFMT_MU_LAW is emulated using a software based (lookup table) translation between mu-law and
8-bit encoding. This causes poor quality when compared with straight 8 bits.

Applications should check that the sample format they require is supported by the device.
Unsupported formats should be handled by converting data to another format (usually AFMT_U8).
Alternatively, the program should abort if it cannot do the conversion. Trying to play data in an
unsupported format is a fatal error. The result is usually just loud noise which may damage ears,
headphones, speakers, amplifiers, concrete walls and other unprotected objects.

The above format identifiers have been selected so that AFMT_U8 is defined as 8 and
AFMT_S16_LE is 16. This makes these identifiers compatible with older ioctl calls which were
used to select the number of bits. This is valid just for these two formats so format identifiers should
not be used as sample sizes in programs.

The AFMT_S32_XX formats are designed to be used with applications requiring more than 16 bit
sample sizes. Storage allocated for one sample is 32 bits (int in most architectures). 24 bit data is
stored in the three most significant bytes (the least significant byte should be set to zero).

AFMT_S16_NE is a macro provided for convenience. It is defined to be AFMT_S16_LE or
AFMT_S16_BE depending of endian convention of the processor where the program is being run.
AFMT_S32_NE behaves in the same way.

The number of bits required to store a sample is:
& 4 bits for the IMA ADPCM format,
& 8 bits for 8-bit formats, mu-law and A-law,
& 16 bits for the 16-bit formats, and
& 32 bits for the 24/32 bit formats.
& undefined for the MPEG audio format.

33

int format;
format = AFMT_S16_LE;
if (ioctl(audio_fd, SNDCTL_DSP_SETFMT, &format) == -1) {
 /* fatal error */
 perror("SNDCTL_DSP_SETFMT");
 exit(1);
}

if (format != AFMT_S16_LE) {

 /* The device doesn't support the requested audio format. The
 program should use another format (for example the one returned
 in "format") or alternatively it must display an error message
 and to abort. */
}

int mask;

if (ioctl(audio_fd, SNDCTL_DSP_GETFMTS, &mask) == -1) {
 /* Handle fatal error ... */
}
if (mask & AFMT_MPEG) {
 /* The device supports MPEG format ... */
}

The sample format can be set using the ioctl call SNDCTL_DSP_SETFMT. The following code
fragment sets the audio format to AFMT_S16_LE (other formats are similar):

Listing 5 - Setting Sample Format

The SNDCTL_DSP_SETFMT ioctl call simply returns the currently used format if AFMT_QUERY
is passed as the argument.

It is very important to check that the value returned in the argument after the ioctl call matches
the requested format. If the device doesn't support this particular format, it rejects the call and returns
another format which is supported by the hardware.

A program can check which formats are supported by the device by calling ioctl
SNDCTL_DSP_GETFMTS as in the listing below:

Listing 6 - Checking for Supported Formats

34

NOTE
SNDCTL_DSP_GETFMTS returns only the sample formats that are actually supported by the
hardware. It is possible that the driver supports more formats using some kind of software
conversion (signed to unsigned, big-endian to little-endian or 8-bits to 16-bits). These emulated
formats are not reported by this ioctl but SNDCTL_DSP_SETFMT accepts them. The software
conversions consume a significant amount of CPU time so they should be avoided. Use this feature
only if it is not possible to modify the application to produce the supported data format directly.

int channels = 2; /* 1=mono, 2=stereo */
if (ioctl(audio_fd, SNDCTL_DSP_CHANNELS, &channels) == -1) {
 /* Fatal error */
 perror("SNDCTL_DSP_CHANNELS");
 exit(1);
}

if (channels != 2)
{
 /* The device doesn't support stereo mode ... */
}

NOTE
Applications must select the number of channels and number of bits before selecting sampling
speed. There are devices which have different maximum speeds for mono and stereo modes. The
program will behave incorrectly if the number of channels is changed after setting the card to high
speed mode. The speed must be selected before the first read or write call to the device.

AFMT_MU_LAW is a data format which is supported by all devices. OSS versions prior to 3.6 always
reported this format in SNDCTL_DSP_GETFMTS. Version 3.6 and later report it only if the device
supports mu-law format in hardware. This encoding is meant to be used only with applications and
audio files ported from systems using mu-law encoding (such as SunOS).

Selecting the Number of Channels (Mono/Stereo)

Most modern audio devices support stereo mode. The default mode is mono. An application can
select the number of channels calling ioctl SNDCTL_DSP_CHANNELS with an argument
specifying the number of channels (see listing 7). Some devices support up to 16 channels. Future
devices may support even more.

Listing 7 : Setting Number of Channels

An application should check the value returned in the variable pointed by the argument. Many older
SoundBlaster 1 and 2 compatible devices don't support stereo. As well, there are high end devices
which support only stereo modes.

Selecting Sampling Rate (speed)

35

int speed = 11025;
if (ioctl(audio_fd, SNDCTL_DSP_SPEED, &speed)==-1) {
 /* Fatal error */
 perror("SNDCTL_DSP_SPEED");
 exit(Error code);
}
if (/* returned speed differs significantly from the requested one... */) {
 /* The device doesn't support the requested speed... */
}

Sampling rate is the parameter that determines much of the quality of an audio sample. The OSS API
permits selecting any frequency between 1 Hz and 2 GHz. However in practice there are limits set
by the audio device being used. The minimum frequency is usually 5 kHz while the maximum
frequency varies widely. Some of the oldest sound cards supported at most 22.05 kHz (playback)
or 11.025 kHz (recording). The next generation supported 44.1 kHz (mono) or 22.05 kHz (stereo).
With modern sound devices the limit is 96 kHz (DVD quality) but there are still few popular cards
that support just 44.1 kHz (audio CD quality).

The default sampling rate is 8 kHz. However an application should not depend on the default since
there are devices that support only higher sampling rates. The default rate could be as high as 96 kHz
with such devices.

Codec devices usually generate the sampling clock by dividing the frequency of a high speed crystal
oscillator. In this way it is not possible to generate all possible frequencies in the valid range. For
this reason the driver always computes the valid frequency which is closest to the requested one and
returns it to the calling program. The application should check the returned frequency and to
compare it with the requested one. Differences of few percents should be ignored since they are
usually not audible. A larger difference means that the device is not capable to reproduce the
requested sampling rate at all or it may be currently configured to use some fixed rate.

Also note that this call rarely returns an error (-1). Getting an OK result doesn't mean that the
requested sampling rate was accepted. The value returned in the argument needs to be checked.

With some professional devices the sampling rate may be locked to some external source (S/PDIF,
AES/EBU, ADAT, or world clock). In this case the SNDCTL_DSP_SPEED ioctl cannot change the
sampling rate, instead the locked rate will be returned. This type of exceptional condition will be
explained in the README file for the particular low-level sound driver.

The following code fragment can be used to select the sampling speed:

Listing 8 - Setting Sampling Rate

36

NOTE
Applications must select the number of channels and number of bits before selecting speed. There
are devices which have different maximum speeds for mono and stereo modes. The program will
behave incorrectly if number of channels is changed after setting the card to high speed mode.
Speed must be selected before the first read or write call to the device.

NOTE
All of these ioctl calls are likely to cause clicks or unnecessary pauses in the output. You should
use them only when they are absolutely required.

Other Commonly Used ioctl Calls

It is possible to implement most audio processing programs without using any ioctl calls other
than the three described earlier. This is possible if the application just opens the device, sets
parameters, calls read or write continuously (without noticeable delays or pauses) and finally
closes the device. This kind of application can be described as stream or batch application.

There are three additional calls which may be required with slightly more complicated programs.
All of them do not require or return an argument (just use an argument of 0).

The ioctl SNDCTL_DSP_SYNC can be used when an application wants to wait until the last byte
written to the device has been played (it doesn't wait in recording mode). When that occurs, the call
resets (stops) the device and returns back to the calling program. Note that this call may take several
seconds to execute depending on the amount of data in the buffers. Closing any sound device calls
SNDCTL_DSP_SYNC implicitly. It is highly recommended that you close and reopen the device
instead of calling SNDCTL_DSP_SYNC.

The ioctl SNDCTL_DSP_RESET stops the device immediately and returns it to a state where it
can accept new parameters. It should not be called after opening the device as it may cause unwanted
side effects in this situation. The call is only required when recording ir playback needs to be
aborted. In general, opening and closing the device is recommended after using
SNDCTL_DSP_RESET.

The ioctl SNDCTL_DSP_POST is a lightweight version of SNDCTL_DSP_SYNC. It just tells to
the driver that there is likely to be a pause in the output. This makes it possible for the device to
handle the pause more intelligently. This ioctl call doesn't block the application.

There are few places where these calls should be used. You should call SNDCTL_DSP_POST when
your program is going to pause continuous output of audio data for relatively long time. This kind
of situation is, for example, the following:

& after playing a sound effect when a new one is not started immediately (another way is to

37

output silence until next effect starts);

& before the application starts waiting for user input;

& before starting lengthy operation such as loading a large file to memory.

The functions SNDCTL_DSP_RESET or SNDCTL_DSP_SYNC should be called when the
application wants to change sampling parameters (speed, number of channels or number of bits).
However it's more reliable to close and reopen the device at the moment of parameter change.

The application must call SNDCTL_DSP_SYNC or SNDCTL_DSP_RESET before switching
between recording and playback modes (or alternatively it should close and reopen the audio device
(recommended)).

Interpreting Audio Data

Encoding of audio data depends on the sample format. There are several possible formats, the most
common of which are described here.

Mu-law (Logarithmic Encoding)

This is a format that originated from digital telephone technology. Each sample is represented as an
8-bit value which is compressed from the original 16-bit value. Due to logarithmic encoding, the
value must be converted to linear format before it is used in computations (two mu-law encoded
values cannot simply be added). The actual conversion procedure is beyond the scope of this text.
Avoid mu-law if possible and use the 8 or 16-bit linear formats instead.

8-bit Unsigned

This is the normal PC sound card (SoundBlaster) format which is supported by practically all sound
hardware. Each sample is stored in an 8-bit byte. The value of 0 represents the minimum level and
255 the maximum. The neutral level is 128 (0x80 in hexadecimal). In practice there is some noise
in the silent portions of recorded files, so the byte values may vary between 127 (0x7f) and 129
(0x81).

The C data type to be used is unsigned char . To convert from unsigned to signed 8-bit formats,
subtract 128 from the value to be converted. Exclusive ORing value with 0x80 does the same (in C
use the expression "value ^= 0x80 ").

16-bit Signed

38

CAUTION
Care must be taken when working with 16-bit formats. 16-bit data is not portable and depends
on the design of both the CPU and audio device. The situation is simple when using a
little-endian x86 CPU with a normal soundcard. In this case both the CPU and the soundcard use
the same encoding for 16-bit data. However, the same is not true when using 16-bit encoding in
a big-endian environment such as SPARC, PowerPC or HP-PA.

unsigned char devbuf[4096];
int applicbuf[2048];
int i, p=0;

/* Place 2048 16-bit samples into applicbuf[] here */
for (i=0; i<2048; i+=2) {
 /* first send the low byte then the high byte */
 devbuf[p++] = (unsigned char)(applicbuf[i] & 0xff);
 devbuf[p++] = (unsigned char)((applicbuf[i] >> 8) & 0xff);
}
/* Write the data to the device ... */

The 16-bit encoding normally used by sound hardware is little-endian (AFMT_S16_LE). However
there are machines with built-in audio chips which support only big-endian encoding.

When using signed 16-bit data, the C data type best matching this encoding is usually signed
short . However, this is true only in little-endian machines. In addition, the C standard doesn't
define the sizes of particular data types so there is no guarantee that short is 16 bits long in all
machines. For this reason, using an array of signed short as an audio buffer should be
considered a programming error although it is commonly done in audio applications.

The proper way is to use an array of unsigned char and to manually assemble/disassemble the
buffer to be passed to the driver. For example:

Listing 9 - Handling 16-bit Data

Disassembling the data after input from the file can be performed in similar way (this is left as an
exercise for the reader).

The AFMT_S16_NE format can be used when a program wants to encode or decode 16-bit samples
locally. It automatically selects the right format for the CPU architecture being compiled for. In this
way it’s usually possible to simply use signed short format to store the samples.

24 and 32 bit signet formats

The AFMT_S32_LE, AFMT_S32_BE, and AFMT_S32_NE formats are a 32-bit signed format
which can be used to store audio data of arbitrary precision. Data smaller than 32 bits is stored left
justified so that the unused bits are set to all zeroes. For example, 24-but data is store such that the
24 most significant bits are used and the 8 least significant are left as zeroes.

Encoding of Stereo Data

39

When using stereo data, there are two samples for each time slot. The left channel data is always
stored before the right channel data. The samples for both channels are encoded as described
previously.

This is extended when more channels are used. For example, with 4 channels the sample values for
each channel are send in turn.

Multiple channels

OSS supports professional multi channel audio devices that support up to 16 (or even more) mono
channels (or up to 8 stereo channel pairs). Depending on the device being used there are two different
ways to handle multiple channels. In some cases the driver supports both methods at the same time.

Interleaved multi channel audio

In this method there is just one device file (such as /dev/dsp) that supports multiple channels. The
application can simply request multiple channels (2, 3, 4, ..., N) using the
SNDCTL_DSP_CHANNELS ioctl. The multi channel data will the be encoded in similar way than
with stereo so that the channel samples for every sampling period will be interleaved.

Multiple audio device method

In this method there are several device files (dev/dspM to /dev/dspM+N where M is the device
number of the first channel and N is the number of channels). In this way the same application or
several separate applications may open the channels individually. It's also possible that the device
files are organized as stereo pairs (/dev/dspM=channels0/1, /dev/dspM+1=channels2/3, etc).

Mixed multi device and interleaved method

With devices that provide multiple independent device files it's also possible to use third approach
that provides almost infinite flexibility. In this way one application can open one device file (say
/dev/dsp0) and set it to stereo (2 channel) mode (this allocates the channel reserved for /dev/dsp1
too). Another application may open /dev/dsp2 and set it to a 4 channel mode (so the channels of
/dev/dsp3, /dev/dsp4 and /dev/dsp5 will get allocated too). Finally third and fourth applications may
open /dev/dsp6 and /dev/dsp7 and then use them in mono mode. All possible channel combinations
are permitted.

Changing mixer settings for an audio device

In general it's highly recommended that audio applications don't touch the mixer settings. The idea
is that users will use a dedicated mixer program to make changes in the mixer settings. An audio
application changing them too is likely to cause conflicts.

40

At least great care must be taken so that problems on the mixer side don't break the application.
There are already too many good audio applications that fail because their mixer support is broken.

If you really have to do mixer changes you should do the im the following way.

1) Do not open any /dev/mixer# devices. There is no way to find out which one (if any) is related
with this particular audio device. Instead call the mixer ioctls (as defined in the mixer programming
section) directly on the audio device file. You should not try to reopen the device again for mixer
access. Just use the same file descriptor as for audio reads and writes.

2) You may only change the recording device setting and PCM volume. These are the only
controls that may work in the same way with all devices. If some mixer control is missing it's not
an error condition. It just means that you don't need to care about it at all. Possibly the device
being used is just a high end professional device which doesn't have any unnecessary mixer
devices on the signal path.

3) If you encounter any kind of error when doing mixer access just ignore the situation or
(preferably) stop trying to do any further mixer operations. The worst mistake you can do is
aborting the application due to a mixer problem. The audio features of your application will still
work even the mixer access fails (these two things are completely unrelated).

Conclusions

The preceding should be all you need to know when implementing basic audio applications.
There are many other ioctl calls but they are usually not required. However, there are real-time
audio applications such as games, voice conferencing systems, sound analysis tools, effect
processors and many others. In these applications more advanced techniques are required. These
are covered in the later section Advanced Programming Topics. Make sure that you understand
all of the basic concepts before proceeding to the advanced section.

41

MIDI Programming

This section starts with a general introduction to MIDI, then covers programming using both the
low-level API and the raw music interface.

What is MIDI?

The acronym MIDI stands for Musical Instrument Digital Interface. The MIDI 1.0 Detailed
Specification defines both the hardware level interface and the communication protocol used for
communication between devices using a MIDI interface. It is primarily a data communication
specification but is also used in other ways. This section gives a very cursory overview of MIDI.

The hardware level MIDI interface is an asynchronous serial byte-oriented protocol similar to
(but not compatible with) the RS-232 standard. The data transfer rate is 31250 bits per second
and devices are connected using MIDI cables which use a 5-pin DIN connector on each end. One
cable can carry data on just one direction; a bi-directional connection requires two cables. More
than two devices can be connected together by daisy-chaining the devices.

MIDI devices communicate by sending messages through the MIDI cable. Every message starts
with a status byte and may have one or more additional data bytes. The status byte has 1 in the
most significant bit while the data bytes have 0. This means that the data bytes can take just 128
different values and carry just 7 bits of information.

The upper four bits of a status byte specify the type of status message and the last 4 bits carry the
MIDI channel number. Status bytes 0xF0 to 0xFF are reserved for system messages.

There are 16 possible channels in the MIDI cable. Each of them can be assigned to physically
separate devices or devices may interpret the messages sent to all channels. Some parameters,
such as instrument (program) number, are assigned by channel so each device listening to a
particular MIDI channel will play using the same instrument number. The device has the freedom
to interpret the instrument number as it wishes.

For example, when a performer presses a key on a music keyboard, a NOTE ON message is
transmitted on the MIDI cable. It starts with the status byte 0x9X (where the X is the channel
number). There are two data bytes following the status. The first is the note number, indicating
which key the performer pressed. The second specifies the velocity of the key press. The velocity
is used to control the volume and some other parameters of the played sound.

It is important to note that no sound is transferred through the MIDI interface, just instructions
for how the receiving instrument should be controlled.

A MIDI file contains MIDI messages and other data which can be used by MIDI sequencers and
other applications. It is a well-defined interchange format which makes it possible to transfer

42

songs between virtually any application supporting the format. These files commonly have the
extension mid .

Unlike some other file formats for storing musical information (e.g. mod), MIDI files don't
contain any instrument data. The instruments are defined by including some MIDI program
change messages into the files. The playing system has complete freedom to assign the actual
instrument timbres for the program numbers.

Low level MIDI Programming

Introduction

There is a separate device file for each installed MIDI interface. The device name contains two
decimal digits which specify the interface number. The interface number is shown in the output
of /dev/sndstat . For example, the device file for the first installed MIDI port is
/dev/midi00 . The name /dev/midi is a symbolic link that points to the default MIDI
device file, which is usually /dev/midi00 .

These device files have capabilities similar to the ordinary /dev/tty interface. Everything
written to the device will be sent to the MIDI port as soon as possible (not necessarily
immediately, there could be some earlier written bytes in the queue which delay the transmit).
There are no timing features, which makes it difficult to use these devices for sequencer type
applications. The intended use of this interface is sending and receiving system exclusive
messages. This is required, for example, when making patch editors and librarians for various
MIDI synthesizers.

Reading from the device waits until there is at least one byte in the receive buffer. When the first
byte is received, the driver will not wait for additional characters. This means that the read
usually returns fewer bytes than requested. Since the MIDI transfer rate is fairly high (about 31
Kbaud), several bytes will be received before the reading process finally gets activated and is
able to continue execution of the read call. On a 50 MHz 486 system, for example, it can
receive up to about 60 bytes at a time. On a slower or more heavily loaded system the read
could return even more data at once.

There are a couple of unnecessary delays in the current implementation, but they seem to be
harmless. For example, you can route the incoming MIDI data from one port into another using
"cat /dev/midi00 >/dev/midi01 ". There is no noticeable delay between a key press on
the keyboard and the sound on the synthesizer connected to /dev/midi 01.

The /dev/midi interface supports the select system call, but currently only on the Linux
platform.

To use the raw MIDI devices, you will need some knowledge of the MIDI protocol. The official

43

MIDI 1.0 specification is sold by the MIDI Manufacturer's Association (MMA). There are some
books containing the most important parts of the protocol. In addition, various unofficial MIDI
specifications are available on the Internet, one of which is
ftp://mitpress.mit.edu/pub/Computer-Music-Journal/Documents/MIDI.

Changing Parameters

The SNDCTL_MIDI_PRETIME ioctl function sets the timeout for which to wait for the first
MIDI message byte to be received. It accepts an integer parameter which specifies the time to
wait in 100 ms steps. By default the driver waits indefinitely for data.

44

Raw Music Interface

Background

The raw music interface provides low-level access to the FM synthesizer and the MIDI devices
on the soundcard. This interface is provided only in the commercial Open Sound System version
(not OSS/Free) and it works only with soundcards that have FM syhthesizer hardware (OPL3).
The API definitions can be found in the file <dm.h >. Using this old interface is not
recommended any more since FM synth chips are not present on most current soundcards.

/dev/dmfm0

By providing register level access to the FM synthesizer chip, developers can use the FM
synthesizer in applications that are not music or sequencer oriented. Examples are signal
generation and acoustic research. By obtaining direct access to the FM chip, you can generate
custom FM sounds that cannot be played back via the sequencer. You can control individual
parameters and export the resulting sound as a sequencer patch file.

/dev/dmmidi0

On the MIDI side, the raw music API provides simple read and write access to the MIDI port.
This enables applications to provide their own MIDI sequencing. Examples of such applications
are MIDI lighting controllers and extended MIDI support. In contrast, the /dev/midi device in
OSS provides a TTY like interface and does provide intelligent MIDI processing. The raw music
MIDI device provides a direct interface to the MIDI device.

Applications That Use the Raw Music Interface

A number of sample applications that use the raw music interface can be downloaded for the OSS
web site. They are provided as pre-compiled binaries (with Motif) for the Linux x86 platform.

xfmedit - this is an editor for controlling all the FM synthesizer's registers. This provides OPL-3
2-operator access.

xcmf - This is a player for playing Creative Music Format (cmf) music files, which are a
derivative of the standard MIDI except that the patches are contained in the file. This application
provides a GUI for selecting the CMF file and tape-recorder like controls.

xmidi - This is a MIDI player which plays back MIDI files in the 4-operator mode of the FM
synthesizer. This application allow you to change the MIDI instrument on the fly.

xsynth - This an application which provides a keyboard interface. You can either use the mouse
to click on the keys or use the computer keyboard to make the sound. It is a virtual synthesizer

45

which provides access to MIDI channels. It also provides a drum pattern generator. Additionally,
it also allows you to record and play back MIDI files via an FM or wave-table synthesizer.

xmuseq - This is a piano-roll style MIDI editor. It provides complete MIDI editing capabilities
such as is found on Windows based MIDI editors such as Windjammer. This is an evolving
product. There are plans to provide music notation support.

FM Synthesizer Interface

Introduction

The FM synthesizer uses FM modulation to perform tone generation. The FM synthesizer
supports OPL-3 mode (2 or 4 operator stereo mode) or the older OPL-2 mode (AdLib mono
mode). FM synthesis interface to the device driver is provided through ioctl s. The following
sections deal with the basic FM synthesis programming techniques.

FM Synthesizer Specifications:

& Yamaha YMF 262 OPL-3 Chip
& AdLib Compatible OPL-2 mode
& OPL-2 mode (AdLib) supports 9 channels of 2-operator FM tones or 6 channels of 2

operator FM tones and 5 percussion instruments
& OPL-3 mode supports 18 channels of 2-operator Stereo FM tones or 6 channels of

4-operator and 6 channels of 2-operator FM tones and 5 percussion instrument channels

FM synthesis uses a modulator cell and a carrier cell. The modulator cell modulates the carrier
cell. The FM synthesizer provides 36 cells comprising of 18 modulator cells and 18 carrier cells
that result in 18 simultaneous channels being generated. In essence, the 18 channels can generate
any 2 operator note.

There are basically 2 modes supported by the FM synthesizer: OPL-2 and OPL-3. OPL-2 mode
consists of nine 2-operator note channels with mono output. OPL-3 mode consists of eighteen
2-operator note channels with stereo output or six 4-operator and six 2-operator channels. Both
OPL-2 and OPL-3 modes support 5 percussion instruments and when the rhythm mode is
selected, the percussion instruments occupy 3 channels (1 channel for bass drum, ½ channel for
the other 4 percussion instruments).

Data Structures

The FM synthesizer uses three structures for FM tone generation. The data structure
dm_fm_voice sets the voice parameters for the FM tone. The parameters do not change for a
given type of voice. The second data structure used is dm_fm_note . This data structure sets the
frequency and octave and sounds the tone when activated for a particular channel. The final data
structure is dm_fm_param . This data structure controls the rhythm section as well as global

46

parameters for the FM synthesizer.

FM Voice Data Structure

struct dm_fm_voice
{
 unsigned char op; /* 0 for modulator and 1 for carrier */
 unsigned char voice; /* Channels of 2-op notes */
 unsigned char am; /* Tremolo or AM modulation effect flag - 1 bit
*/
 unsigned char vibrato; /* Vibrato effect flag - 1 bit */
 unsigned char do_sustain; /* Sustaining sound phase flag -1 1 bit */
 unsigned char kbd_scale; /* keyboard scaling flag - 1 bit */
 unsigned char harmonic; /* Harmonic or frequency multiplier - 4 bits */
 unsigned char scale_level; /* Decreasing volume of higher notes - 2 bits */
 unsigned char volume; /* Volume of output - 6 bits */
 unsigned char attack; /* Attack phase level of the note - 4 bits */
 unsigned char decay; /* Decay phase level of the note - 4 bits */
 unsigned char sustain; /* Sustain phase level of the note - 4 bits */
 unsigned char release; /* Release phase level of the note - 4 bits */
 unsigned char feedback; /* Feedback from op 1 or op 2 - 3 bits */
 unsigned char connection; /* Serial or parallel operator connection-1 bit
*/
 unsigned char left; /* Left channel audio output */
 unsigned char right; /* Right channel audio output */
 unsigned char waveform; /* Waveform select - 3 bits */
};

The fields of the structure are used as follows:

op - holds the type modulator or carrier operator. A value of 0 denotes a modulator cell and 1
denotes a carrier cell.

voice - holds the voice or the channel number. There are 36 op cells that result in 18 channels
that can produce a note simultaneously. A value of 0 through 17 specify a channel. In rhythm
mode, channels 6, 7 and 8 cannot be used to generate melodic notes.

am - a flag (1-bit) that turns the AM modulation (tremolo) effect on or off. The rate for AM
modulation is 3.7 Hz.

vibrato - a flag (1-bit) that turn the vibrato effect on or off. The rate is 6.4 Hz.

do_sustain - a flag (1-bit) that turns the sustained sound on or off. If do_sustain is 1 then the
sustaining sound is sound when the note is played. If do_sustain is 0 then the diminishing sound
is selected when the note on (see the figure).

47

Figure 1 - do_sustain bit

harmonic - a 3 bit field (values 0-7) which represents the harmonic or the multiplication factor that
needs to be applied to the frequency(fnum). The following table specifies the multiplication factor
with respect to harmonic number.

Table 4 - harmonic values

Harmonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiplier 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

kbd_scale - a flag (1-bit) that turns on the keyboard scale rate. If kbd_scale is 1 then the
attack/decay rates become faster as the pitch (fnum + octave) increases.

Table 5 - kbd_scale values

Key Scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KSR = 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

KSR = 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

scale_level - is a 2 bit field (values 0-3) which produces a gradual decrease in note output level
towards higher pitches (octave+fnum). The following table shows the scale level and the
corresponding attenuation.

Table 6 - scale_level values

KSL 0 1 2 3

Attenuation 0 db/Octave 3 dB/Octave 1.5 dB/Octave 6 dB/Octave

volume - a 6 bit field (values 0-63) which represents the total output volume of the op. Maximum
attenuation is 47.25 dB. Attenuating the output from a modulator cell will change the frequency

48

spectrum produced by the carrier cell.

attack - a 4-bit field (values 0-15) that sets the attack rate or the rising time of the sound.

decay - a 4-bit field (values 0-15) that sets the decay rate or the diminishing time after the attack.

sustain - a 4-bit field (values 0-15) that sets the sustain level. For continuing sounds the sustain
level gives the point of change where the attenuated sounds in the decay mode changes to a sound
having a constant level. For diminishing sounds, the sustain level gives the point where the decay
mode changes to a release mode.

release - a 4-bit field (values 0-15) that sets the release level. For continuing sounds, the release
level defines the rate at which sound disappears after key_off. For diminishing sounds, the release
level indicates the attenuation after the sustain level is reached.

feedback - a 3 bit field (values 0-7) which determines the modulation factor for self-feedback.
This is applicable only to the modulator cell.

Table 7 - feedback bits

Feedback 0 1 2 3 4 5 6 7

Modulation 0 %/16 %/8 %/4 %/2 % 2% 4%

connection - a flag (1-bit) that describes the connection of the modulator and carrier. When
connection is 0 the carrier is chained to the modulator in a serial connection and produces true FM
tones. If connection is 1, the carrier and modulator are connected in parallel to produce two
simultaneous tones.

waveform - a 3 bit field (values 0-7) which specifies the shape of the waveform.

left - a flag (1 bit) field which enables (set to 1) the left output channel or disables (set to 0) the
left output channel.

right - a flag (1 bit) field which enables (set to 1) the right output channel or disables (set to 0) the
right output channel.

FM Note Data Structure

The next data structure consists of parameters such as octave, channel and frequency. These
parameters vary compared to the dm_fm_voice characteristics.

struct dm_fm_note
{
 unsigned char voice; /* 18 channels of 2-op notes */
 unsigned char octave; /* Octave number of the note - 3 bits */
 unsigned int fnum; /* Frequency of the note - 10 bits */
 unsigned char key_on; /* Output sound flag - 1 bit */

49

};

voice - holds the voice or the channel number. There are 36 op cells resulting in 18 channels that
can produce a note simultaneously. A value of 0 through 17 specify a channel. In rhythm mode,
channels 6, 7, and 8 cannot be used to generate melodic notes.

octave - a 3 bit value (values 0-7) which represents the octave number of the note.

fnum - a 10 bit value (values 0-1023) which represents the frequency of the note.

key_on - a flag (1-bit) that voices the notes (i.e. sound is produced). When key_on is 1, sound is
produced. If key_on is 0, no sound is produced. In order to sound a note the key_on should make a
0 to 1 transition. Hence, you need to set it to 0 and then set it to 1 in the FM synthesizer.

FM Parameter Data Structure

The following is a description of the data structure used for the rhythm section and global FM
parameters.

struct dm_fm_param
{
 unsigned char am_depth; /* AM modulation depth for AM modulation effect */
 unsigned char vib_depth; /* Vibrato depth for Vibrato effect */
 unsigned char kbd_split; /* split keyboard for kbd_scaling */
 unsigned char rhythm; /* turn on rhythm mode */
 unsigned char bass; /* bass-occupies channel 7(modulator & carrier) */
 unsigned char snare; /* snare - occupies modulator of channel 8 */
 unsigned char tomtom; /* tom-tom - occupies modulator of channel 9 */
 unsigned char cymbal; /* cymbal - occupies carrier of channel 9 */
 unsigned char hihat; /* hihat - occupies carrier of channel 8 */
};

am_depth - a flag (1 bit) field which determines the amplitude modulation (tremolo) depth. The
attenuation is 4.8 dB when am_depth=1 and 1 dB when am_depth=0.

vib_depth - a flag (1 bit) field which determines the vibrato depth of the op cell. The attenuation
factor is 14% when vib_depth=1 and 7% when vib_depth=0.

kbd_split - a flag (1 bit) field which determines the split method to select the key scale number.
This field is used to select the kbd_scale value. Depending on the pitch of the note (octave plus
fnum), a key scale number between 0 and 15 is generated. This key scale number is applied to the
attack/decay/sustain/release rates depending whether kbd_scale is 1 or 0. If kbd_split=1 then the key
scale number depends on the most significant bit of the frequency. If kbd_split=0 then the key_scale
number depends on the 2nd MSB of the frequency.

rhythm - a flag (1 bit) field. When rhythm=1, the channels 6,7 and 8 are used to generate
percussion instruments such as bass, snare, tomtom, hihat and cymbals. Hence, regular FM notes or
operators cannot be played on these channels.

50

bass - a flag (1 bit) field which turns on or off the bass drum percussion instrument. The bass drum
requires a modulator and a carrier cell that occupy channel 6. Both operators require note settings
(Attack/Decay/Sustain/Release/Octave/Fnum etc) but the key_on field should be set to 0. Only when
bass=1 is the bass drum sound produced.

snare - a flag (1 bit) field which turns on or off the snare drum percussion instrument. The snare
drum requires a modulator cell occupying channel 7. The modulator cell needs to be set with the note
settings that simulate a snare drum but the key_on field must be 0. Snare drum sound is produced
when snare=1.

tomtom - a flag (1 bit) field which turns on of off the tomtom drums. The tomtom drum requires
a carrier cell occupying channel 8. The carrier cell needs to be set with note settings that resemble
the tomtom drum but the key_on field must be 0. Tomtom drum sound is produced when tomtom=1.

cymbal - a flag (1 bit) field which turns on or off the cymbal. The cymbal instrument requires a
modulator cell occupying channel 8. The modulator cell must be set with note settings that resemble
a cymbal. As with the previous percussion instrument, key_on should be 0. Only when cymbal=1,
is the cymbal sound produced.

hihat - a flag (1 bit) field which turns on or off the hihat. The hihat instrument requires a carrier
cell occupying channel 7. The carrier cell must be set with note settings that resemble a hihat. As
with the previous percussion instrument, key_on should be 0. Only when hihat=1, is the hihat sound
produced.

FM Synthesizer ioctl Functions

In this section we will examine the ioctl s that are used to generate FM tones. Before you can issue
the ioctl s you must first obtain the file descriptor using an open call on the /dev/sbpfm0
device. In the following examples we will use the file descriptor fmfd for the FM synthesizer
device.

FM_IOCTL_RESET

This ioctl is used to reset the FM synthesizer. After opening the FM device /dev/dmfm0 it is
advisable to issue a reset ioctl . This ioctl takes no parameters and is used as follows:

ioctl(fmdev, FM_IOCTL_RESET, NULL);

FM_IOCTL_SET_MODE

This ioctl is used to set the mode of the FM synthesizer. The ioctl takes one parameters which
should be set to the value OPL2 or OPL3. OPL2 sets the FM synthesizer in OPL-2 or AdLib
compatible mode. In this mode only 9 channels of 2 op voices with mono output are permitted. In
OPL3 mode, there are 18 channels of 2 op with stereo output or 6 channels of 4 operators and 6

51

channels of 2 operators with stereo output. The command to set the FM synthesizer in OPL-3 mode
is as follows:

ioctl(fmfd, FM_IOCTL_SET_MODE, OPL3);

FM_IOCTL_SET_VOICE

This ioctl sets the voice parameters for the modulator and carrier operators. It accepts one
parameter type struct dm_fm_voice . The ioctl is used as follows:

struct dm_fm_voice voice;
ioctl (fmfd, FM_IOCTL_SET_VOICE, &voice);

FM_IOCTL_PLAY_NOTE

This ioctl is used to voice a particular FM channel which has been preset with the FM voice
characteristics. The parameter is of type struct dm_fm_note. The ioctl is used as follows:

struct dm_fm_note note;
note.key_on = 0;
ioctl(fmfd, FM_IOCTL_PLAY_NOTE, ¬e);
note.key_on = 1;
ioctl(fmfd, FM_IOCTL_PLAY_NOTE, ¬e);

FM_IOCTL_SET_PARAMS

This ioctl is used to set global FM parameters as well as control the percussion instruments. The
parameter is of type struct dm_fm_params . The ioctl is used as follows:

struct dm_fm_params param;
ioctl(fmfd, FM_IOCTL_SET_PARAMS, ¶m);

FM_IOCTL_SET_OPL

This ioctl is used to set the connection type for the 4 op mode. The parameter is a byte defining
the connection. If you want the synthesizer in 2-op mode then the conn_type = 0x0. If you want
the synthesizer in 4-op mode with six 4-op channels then conn_type = 0x3F.

char conn_type = 0x3f;
ioctl(fmfd, FM_IOCTL_SET_PARAMS, &conn_type);

Programming the FM Synthesizer

In this section we will write a simple program to play random notes on the FM synthesizer. The
example will demonstrate the capabilities of the device.

Listing 10 - Example FM Synthesizer Program

52

#include <stdio.h>
#include <fcntl.h>
#include <math.h>
#include <sys/dm.h>

#define VOICES 18
#define RAND(bits) (random() & (1<<(bits)) -1)
main()
{
 int fmfd;
 struct dm_fm_voice modulator, carrier;
 struct dm_fm_note note;
 struct dm_fm_params param;
 int channel_num;

/* First we open the FM device using an open call */
 fmfd = open("/dev/dmfm0", O_WRONLY);
 if (fmfd < 0)
 perror("open");

/* Now we reset the FM synthesizer using the RESET ioctl */
 if (ioctl(fmfd, FM_IOCTL_RESET) == -1)
 perror("reset");

/* Now set the FM synthesizer in OPL3 mode */
 if (ioctl(fmfd, FM_IOCTL_SET_MODE, OPL3) == -1)
 perror("mode");

 while (1) {
/* set global parameters but do not turn on percussion section */
 param.am_depth = RAND(1);
 param.vib_depth = RAND(1);
 param.kbd_split = RAND(1);
 param.rhythm = 0;
 param.bass = 0;
 param.snare = 0;
 param.hihat = 0;
 param.cymbal = 0;
 param.tomtom = 0;
/* send the param structure to the FM synthesizer */
 ioctl(fmfd, FM_IOCTL_SET_PARAMS, ¶m);

/* Play the note on all channels at the same time */
 for (channel_num = 0; channel_num < VOICES; channel_num++)
 {
/*
 * Now fill in the modulator cell structure using randomly generated
 * values and masking off the bits. Look at the definition
 * of RAND(bits)
 */
 modulator.voice = channel_num;
 modulator.op = 0;
 modulator.am = RAND(1);
 modulator.vibrato = RAND(1);
 modulator.do_sustain = RAND(1);
 modulator.kbd_scale = RAND(1);
 modulator.connection = 0;
 modulator.attack = RAND(4);
 modulator.decay = RAND(4);
 modulator.sustain = RAND(4);
 modulator.release = RAND(4);

53

 modulator.volume = RAND(6);
 modulator.scale_level = RAND(2);
 modulator.feedback = RAND(3);
 modulator.waveform = RAND(3);
 modulator.left = RAND(1);
 modulator.right = RAND(1);
/* Send the modulator structure to the FM synth */
 if (ioctl(fmfd, FM_IOCTL_SET_VOICE, &modulator) == -1)
 perror("modulator");
/*
 * Now fill in the carrier cell structure using randomly generated
 * values and masking off the bits. Look at the definition
 * of RAND(bits)
 */
 carrier.voice = channel_num;
 carrier.op = 1;
 carrier.am = RAND(1);
 carrier.vibrato = RAND(1);
 carrier.do_sustain = RAND(1);
 carrier.kbd_scale = RAND(1);
 carrier.connection = 0;
 carrier.attack = RAND(4);
 carrier.decay = RAND(4);
 carrier.sustain = RAND(4);
 carrier.release = RAND(4);
 carrier.harmonic = RAND(4);
 carrier.volume = RAND(6);
 carrier.scale_level = RAND(2);
 carrier.feedback = RAND(3);
 carrier.waveform = RAND(3);
 carrier.left = RAND(1);
 carrier.right = RAND(1);
/* Send the carrier structure to the FM synth */
 if (ioctl(fmfd, FM_IOCTL_SET_VOICE, &carrier) == -1)
 perror("carrier");
/*
 * Now fill in the note structure with random octaves and frequencies.
 * Before sounding the FM tone turn the note off and then key_on the note.
 */
 note.voice = channel_num;
 note.octave = RAND(3);
 note.fnum = RAND(10);
 note.key_on = 0;
 if (ioctl(fmfd, FM_IOCTL_PLAY_NOTE, ¬e) == -1)
 perror("note");
 note.key_on = 1;
 if (ioctl(fmfd, FM_IOCTL_PLAY_NOTE, ¬e) == -1)
 perror("note");
/* sleep between notes */
 usleep(100000);
 } /*for loop*/
 } /*while loop */
}

Additional Notes on FM Programming

FM synthesis requires many parameter fields to be set and sometimes it is simpler to use patches to
simulate various instruments. The Sound Blaster Instrument (SBI) format provides a uniform
approach to programming the FM synthesizer. The SBI format only handles sound characteristics.

54

The program has to provide the frequency and octave values. Sounding of the FM tone occurs when
the key_on bit is set on a particular voice channel. The following is a description of the SBI file
format (Note: the names in parentheses denote the dm_fm_note structure parameter).

Table 8 - SBI File Format

OFFSET (hex) Description

00-03 File ID - 4 Bit ASCII String "SBI" ending with 0x1A

04 - 23 Instrument Name - Null terminated ASCII string

24 Modulator Sound Characteristics
Bit 7: AM Modulation (am)
Bit 6: Vibrato (vibrato)
Bit 5: Sustaining Sound (do_sustain)
Bit 4: Envelop Scaling (kbd_scale)
Bits 3-0: Frequency Multiplier (harmonic)

25 Carrier Sound Characteristics
Bit 7: AM Modulation (am)
Bit 6: Vibrato (vibrato)
Bit 5: Sustaining Sound (do_sustain)
Bit 4: Envelop Scaling (kbd_scale)
Bits 3-0: Frequency Multiplier (harmonic)

26 Modulator Scaling/Output Level
Bits 7-6: Level Scaling (scale_level)
Bits 5-0: Output Level (volume)

27 Carrier Scaling/Output Level
Bits 7-6: Level Scaling (scale_level)
Bits 5-0: Output Level (volume)

28 Modulator Attack/Decay
Bits 7-4: Attack Rate (attack)
Bits 3-0: Decay Rate (decay)

29 Carrier Attack/Decay
Bits 7-4: Attack Rate (attack)
Bits 3-0: Decay Rate (decay)

2A Modulator Sustain/Release
Bits 7-4: Sustain Level (sustain)
Bits 3-0: Release Rate (release)

2B Carrier Sustain/Release
Bits 7-4: Sustain Level (sustain)
Bits 3-0: Release Rate (release)

2C Modulator Wave Select
Bits 7-2: All bits clear (0)
Bits 1-0: Wave Select (waveform)

55

2D Carrier Wave Select
Bits 7-2: All bits clear (0)
Bits 1-0: Wave Select (waveform)

2E Feedback/Connection
Bits 7-4: All bits clear (0)
Bits 3-1: Modulator Feedback (feedback)
Bit 0: Connection (connection)

2F-33 Reserved for future use

The above description requires you to declare the following structures:

struct dm_fm_voice modulator;
struct dm_fm_voice carrier;
struct dm_fm_note note;

Now store the corresponding values from the SBI file into the respective structures. From the above
description, the programmer needs to provide are the following parameters:

modulator.voice=carrier.voice=x (where x is a channel number between 0 and 17)
modulator.left=carrier.left=x (where x is the left audio output flag 0 or 1)
modulator.right=carrier.right=x (where x is the right audio output flag 0 or 1)
modulator.op = 0 (modulator's op number is 0)
carrier.op = 1 (carrier's op is 1)
note.voice = x (where x is a channel number from 0-17)
note.fnum = x (where x is a frequency number from 0-1023)
note.octave = x (where x is an octave number from 0-7)
note.key_on = 1 (the note must be keyed off and then keyed on)

Programming The FM Synthesizer Using SBI Files

The following code explains the mechanism to read an SBI format file and play the note at frequency
800 in octave number 5.

Listing 11 - Sample Code to Read an SBI File
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include "/sys/dm.h"

#define FALSE 0
#define TRUE 1

struct dm_fm_voice op0, op1; /* the voice struct to hold the SBI file */
struct dm_fm_note note; /* the note struct to make the sound */
int fmfd, fd; /* fmfd - FM dev handle; fd - SBI file */
char instrument_buf[16]; /* buffer to hold the SBI data from file */

main (argc, argv)
int argc;
char **argv;
{

56

 fmfd = open("/dev/dmfm0", O_WRONLY); /* open the FM device */
 ioctl(fmfd,FM_IOCTL_RESET); /* reset the FM device */
 ioctl(fmfd, FM_IOCTL_SET_MODE, OPL3); /* set mode to OPL3 */
 set_params(); /* set global FM params */
 fd = open(argv[1], O_RDONLY); /* open the SBI file */

/* now verify that it is truly an SBI instrument file by reading the
 * header
 */
 if (!verify_sbi(fd)) {
 printf("file is not in SBI format\n");
 exit (0);
 }
 get_instrument(fd); /* fill the voice structs */
 play_instrument(); /* play the sound */
}

/* check for "SBI" + 0x1A (\032) in first four bytes of file */
int verify_sbi(fd)
int fd;
{
 char idbuf[5]; /* get id */
 lseek(fd, 0, SEEK_SET);
 if (read(fd, idbuf, 4) != 4)
 return(FALSE); /* compare to standard id */
 idbuf[4] = (char)0;
 if (strcmp(idbuf, "SBI\032") != 0)
 return(FALSE); return(TRUE);
}

get_instrument(fd)
int fd;
{
 lseek(fd, 0x24, SEEK_SET);
 read(fd, instrument_buf, 16);

/* Modulator Characteristics */
 if (instrument_buf[0] & (1<<7))
 op0.vibrato = 1;
 else
 op0.vibrato = 0;
 if (instrument_buf[0] & (1<<6))
 op0.am = 1;
 else
 op0.am = 0;
 if (instrument_buf[0] & (1<<5))
 op0.kbd_scale = 1;
 else
 op0.kbd_scale = 0;
 if (instrument_buf[0] & (1<<4))
 op0.do_sustain = 1;
 else
 op0.do_sustain = 0;
 op0.harmonic = instrument_buf[0] & 0x0F;

/* Carrier Characteristics */
 if (instrument_buf[1] & (1<<7))
 op1.vibrato = 1;
 else
 op1.vibrato = 0;
 if (instrument_buf[1] & (1<<6))

57

 op1.am = 1;
 else
 op1.am = 0;
 if (instrument_buf[1] & (1<<5))
 op1.kbd_scale = 1;
 else
 op1.kbd_scale = 0;
 if (instrument_buf[1] & (1<<4))
 op1.do_sustain = 1;
 else
 op1.do_sustain = 0;
 op1.harmonic = instrument_buf[1] & 0x0F;

/* Modulator Scale/Volume Level */
 op0.scale_level = instrument_buf[2] >>6;
 op0.volume = instrument_buf[2] & 0x3f;

/* Carrier Scale/Volume Level */
 op1.scale_level = instrument_buf[3] >>6;
 op1.volume = instrument_buf[3] & 0x3f;

/* Modulator Attack/Decay */
 op0.attack = instrument_buf[4] >> 4;
 op0.decay = instrument_buf[4] & 0xF;

/* Carrier Attack/Decay */
 op1.attack = instrument_buf[5] >> 4;
 op1.decay = instrument_buf[5] & 0xF;

/* Modulator Sustain/Release */
 op0.sustain = instrument_buf[6] >> 4;
 op0.release = instrument_buf[6] & 0xF;

/* Carrier Sustain/Release */
 op1.sustain = instrument_buf[7] >> 4;
 op1.release = instrument_buf[7] & 0xF;

/* Modulator Waveform */
 op0.waveform = instrument_buf[8] & 0x03;

/* Carruer Waveform */
 op1.waveform = instrument_buf[9] & 0x03;

/* Modulator Feedback/Connection*/
 op0.connection = instrument_buf[0xA] & 0x01;
 op1.connection = op0.connection;
 op0.feedback = (instrument_buf[0xA] >> 1) & 0x07;
 op1.feedback = op0.feedback;

/* byte 0xB - 20 Reserved */
}

play_instrument()
{
/*
 * Set the FM channel to channel 0. Fill in the rest of the fields and
 * Issue an ioctl to set the modulator parameters
 */
 op0.op = 0;
 op0.voice = 0;
 op0.left = 1;

58

 op0.right = 1;
 ioctl(fmfd, FM_IOCTL_SET_VOICE, &op0);
/*
 * Set the FM channel to channel 0. Fill in the rest of the fields and
 * Issue an ioctl to set the carrier parameters
 */
 op1.op = 1;
 op1.voice = 0;
 op1.left = 1;
 op1.right = 1;
 op1.volume = 63;
 ioctl(fmfd, FM_IOCTL_SET_VOICE, &op1);
/*
 * Fill in the note structure and first key_off the note and then key_on.
 */
 note.voice = 0; /* select channel 0 */
 note.octave = 5;
 note.fnum = 800;
 note.key_on = 0; /*Key off*/
 ioctl(fmfd, FM_IOCTL_PLAY_NOTE, ¬e);
 note.key_on = 1; /*Key on*/
 ioctl(fmfd, FM_IOCTL_PLAY_NOTE, ¬e);
}

set_params()
{
struct dm_fm_params p;
 p.am_depth = 0;
 p.vib_depth = 0;
 p.kbd_split = 0;
 p.rhythm = 0;
 p.bass = 0;
 p.snare = 0;
 p.tomtom = 0;
 p.cymbal = 0;
 p.hihat = 0;
 ioctl (fmfd, FM_IOCTL_SET_PARAMS, &p);
}

FM Synthesizer in 4-Operator Mode

In the 4-op mode the FM synthesizer uses 4 operators consisting of two 2-op channels. From 18 2-op
channels, we can get six 4-op channels, with 5 channels for percussion (as described above) and three
2-op channels used for FM voices. The diagram below describes how 18 2-op channels are
organized:

Figure 2 - 4-Operator Schematic for Modulator/Carriers

59

The ioctl FM_IOCTL_SET_OPL is used to set the 4-op connection mask. This ioctl requires
a 6 bit mask. If the mask is 0 then all the FM voice channels default to 2-op mode thus yielding 18
channels or 15 voice plus 5 percussion channels. If the mask is set to 0x3F then the FM synthesizer
is configured for six 4 op voice channels plus six 2 op voice channels. The six 2 op voice channels
can be configured for 5 percussion channels a 3 voice channels or 6 voice channels. In the case of
the 4 -op channels the above diagram shows which two op channels go into building the six 4 op
channels.

With 4 operators, the following diagram shows how the operators can be connected. The connection
bits from the first two operators is designated as C0 and the connection bits from the remaining two
are designated as C1.

Figure 3 - Connection Possibilities with 4 operators

60

MIDI Interface

Introduction

The MIDI interface is a hi-speed serial interface running at 31,250 baud. There are 8 data bits with
1 start and 1 stop bit. The dmmidi0 device essentially provides simple read and write access to the
MIDI device on the sound card.

Table 9 lists the MIDI channel voice messages. These are the most common messages, and are used
to control an instrument's voices.

61

Table 9 - MIDI Channel Voice Messages

Status Byte Data Bytes Description

1000cccc (cccc is channel #) 0nnnnnnn (Note Number) Note Off Event. This event is sent
0x80 - 0x8F 0vvvvvvv (Velocity) when a note is released.

1001cccc (cccc is the channel #) 0nnnnnnn (Note Number) Note On Event. This message is
0x90 - 0x9F 0vvvvvvv (Velocity) sent when a note is depressed.

1010cccc (cccc is the channel #) 0nnnnnnn (Note Number) Polyphonic Key Pressure Event.
0xA0 - 0xAF 0vvvvvvv (New Velocity) This message is sent when the

velocity of a previously triggered
note is changed.

1011cccc (cccc is the channel #) 0ccccccc (Controller) Control Change Event. This
0xB0 - 0xBF 0vvvvvvv (New Value) message is sent when a controller

such as dials and pedals change
their value. Certain numbers are
reserved for standard controllers.

1100cccc (cccc is the channel #) 0ppppppp (Program Number) Program Change Event. This event
0xC0 - 0xCf is sent to change the patch or the

instrument on a specified channel.

1101cccc (cccc is the channel #) 0ccccccc (Channel Number) Channel Pressure (After Touch).
0xD0 - 0xDF Use this message to send the single

greatest velocity of all notes
depressed.

1110cccc (cccc is the channel #) 01111111 (LSB 7 bits) Pitch Wheel Change. This message
0xE0 - 0xEf 0mmmmmmm (MSB 7 bits) is sent when the pitch bend wheel

is changed. The center position has
a value of 0x2000. Pitch bend is
measured by a 14-bit value.

Table 10 summarizes the MIDI System Exclusive, System Common, and System Real Time
Messages. System Exclusive messages are used for transferring data in a manufacturer-dependent
manner. System Common messages are directed at all MIDI receivers in a system. System Real Time
messages are used for synchronization between clock-based MIDI devices.

62

Table 10 - MIDI System Messages

Real Time / System Data Bytes Description

0xF0 System Exclusive Variable Length Uses to send Sequencer Specific Messages.
First Data Byte should be the
Manufacturer’s ID. Message is terminated
by oxF7 (EOX).

0xF1 Undefined

0xF2 Song Position 14-bit value, LSB first Song Position used in Karaoke systems.

0xF3 Song Select 1 byte Song Number Used to select a song in a list of stored songs
in a sequencer.

0xF4 Undefined

0xF5 Undefined

0xF6 Tune Request None Used to request analog synthesizers to tune
their oscillators.

0xF7 EOX Terminator None Used to terminate a System Exclusive
message

0xF8 Timing Clock None Use to sync devices such as drum machines.
Timing Clock messages are sent at the rate
of 24 clocks per quarter note.

0xF9 Undefined None

0xFA Start None Sent to start a sequencer or external MIDI
unit.

0xFB Continue None Causes the device to pick up at the next
clock mark.

0xFC Stop None Sent to stop a sequencer or external MIDI
unit.

0xFD Undefined None

0xFE Active Sensing None Sent every 300ms. It is used to implement a
timeout mechanism for a receiver to revert
back to its default state. OSS will filter this
byte out from the data received from a MIDI
port so applications will never see it in
incoming data.

0xFF System Reset Initializes the MIDI controller to its powerNone
on defaults. Applications should never write
this byte; it is reserved for future expansion
by OSS.

63

MIDI Note Specification

Table 11 shows the correspondence between MIDI note pitch numbers and note frequencies. For FM synthesis, the
octave is simply the note pitch number divided by 12 (NP/12) and the frequency is note pitch number in the note table
modulo 12 (table[NP%12]) where the note table is the table of note names to frequencies described in the section on
FM synthesizer programming.

Table 11 - MIDI Note Pitch Numbers and Frequencies

Note C C# D D# E F F# G G# A A# B
Octave

0 0 1 2 3 4 5 6 7 8 9 10 11

1 12 13 14 15 16 17 18 19 20 21 22 23

2 24 25 26 27 28 29 30 31 32 33 34 35

3 36 37 38 39 40 41 42 43 44 45 46 47

4 48 49 50 51 52 53 54 55 56 57 58 59

5 60 61 62 63 64 65 66 67 68 69 70 71

76 72 73 74 75 76 77 78 79 80 81 82 83

7 84 85 86 87 88 89 90 91 92 93 94 95

8 96 97 98 99 100 101 102 103 104 105 106 107

9 108 109 110 111 112 113 114 115 116 117 118 119

10 120 121 122 123 124 125 126 127

Reading From MIDI Instruments

In order to read input from a MIDI synthesizer, you need to first loop on reading the status byte.
Depending on the type of the status byte, additional bytes are read from the MIDI keyboard.
Reading data from the MIDI controller is achieved as follows:

1. Open the SoundBlaster MIDI device using an open call. This returns a MIDI device file
descriptor.

2. Read one byte of status info. Use a read call on the MIDI device file descriptor to read 1
byte.

3. Decode the status byte using the table above. If the status byte requires 2 data bytes, then
read two bytes of data into different variables (one byte at a time). If the status byte
requires 1 data byte then issue a single byte read.

4. Perform the necessary operations on the data (send it to the FM synthesizer).

64

NOTE
Devices can make use of the running status feature of the MIDI protocol. Consecutive messages of
the same type can omit the status byte. This is a common source of confusion when decoding MIDI
messages.

5. Loop on reading the status info byte.

Reading From MIDI Files Using Midilib

To read MIDI codes from MIDI files in format 1 or 0 requires the use of the standard MIDI file
library which is supplied along with the software. Please read the documentation on reading
MIDI files using the library. The following example (taken from the library example)
demonstrates the scheme to read MIDI files and output music. MIDI files basically contain a
header with track and SMPTE time code information. The header is also responsible for the
tempo of the MIDI tune. Following the header is a track start flag with SMPTE time codes
followed by a MIDI opcode described above followed by two or three bytes of data depending on
the MIDI opcode. The following scheme describes how to process MIDI files for output to the
FM synthesizer or a MIDI synthesizer connected to the MIDI port.

1. First define your MIDI functions to perform the following basic MIDI codes:

& Key Off
& Key On
& Program Change
& Key Pressure
& Channel Pressure
& Pitch Wheel
& Controller Change (Mf_parameter)
& System Exclusive

These functions are called by the library and can be used to either hook into the FM synthesizer
or output directly via a write to the MIDI port.

2. From main , you need to initialize all the MIDI library function pointers to point to your
specific functions. Otherwise library defaults are taken. In most cases you will have to
define the MIDI library function Mf_getc to point to a local getc type of function
which reads a character from the MIDI file and returns it to the calling function in the
library. In order to define a getc type of routine, you will have to pass a file descriptor
which is obtained using an fopen system call.

3. Issue a call to midifile routine which reads the MIDI format 1 files and parses the
information.

65

4. Close the open file descriptor.

The C-code below describes how to declare local functions. The only functions you need to
define for parsing MIDI files are:

 Mf_error = error;
 Mf_header = txt_header;
 Mf_starttrack = txt_trackstart;
 Mf_endtrack = txt_trackend;
 Mf_on = txt_noteon;
 Mf_off = txt_noteoff;
 Mf_pressure = txt_pressure;
 Mf_controller = txt_parameter;
 Mf_pitchbend = txt_pitchbend;
 Mf_program = txt_program;
 Mf_chanpressure = txt_chanpressure;
 Mf_sysex = txt_sysex;
 Mf_metamisc = txt_metamisc;
 Mf_seqnum = txt_metaseq;
 Mf_eot = txt_metaeot;
 Mf_timesig = txt_timesig;
 Mf_smpte = txt_smpte;
 Mf_tempo = txt_tempo;
 Mf_keysig = txt_keysig;
 Mf_sqspecific = txt_metaspecial;
 Mf_text = txt_metatext;
 Mf_arbitrary = txt_arbitrary;

These functions handle the basic MIDI codes described above as well as handle errors, SMPTE
and SysEx codes found in mode MIDI Format 1 files. You may wish to ignore them if you need
rudimentary MIDI capabilities. The following code uses an array to hold about 100000 MIDI
events which are written to the MIDI port of the SoundBlaster. This array is sorted according to
the SMPTE time code since MIDI files handle one track at a time.

Listing 12 - Reading a MIDI File
/*
 * mftext
 *
 * Convert a MIDI file to verbose text.
 */
#include <stdio.h>
#include <ctype.h>
#include <time.h>
#include <fcntl.h>
#include "midifile.h"

static FILE *F;
struct event {
 char data0;
 char data1;
 char data2;
 int time_stamp;
};

struct event midievent;

66

int current_event = 0;

main(argc,argv)
char **argv;
{
FILE *efopen();
int blastfd;

 if (argc > 1)
 F = efopen(argv[1],"r");
 else
 F = stdin;
 blastfd = open("/dev/sbpmidi0", O_WRONLY);
/* Initialize the function pointer in the MIDI file library */
 initfuncs();
 Mf_getc = filegetc;

/* Start processing the MIDI file */
 midifile();
 fclose(F);
/* qsort the events based on the time stamp */
 qsort(midievent, current_event, sizeof(event), compare);

/* write the events out to the MIDI port. Wait for the time on the event */
 for (i=0; i<current_event; i++) {
 waitfor(midi_event[i].time_stamp);
 write(blastfd, midi_event[i].data0, 1);
 write(blastfd, midi_event[i].data1, 1);
/* Write the 3 byte of data only if necessary */
 if (midievent[i].bytes == 3)
 write(blastfd, midi_event[i].data3, 1);
 }
 exit(0);
}

/* This is the getc routine to read the MIDI file */
filegetc()
{
 return(getc(F));
}

/* This routine opens the MIDI file and flags errors */
FILE *
efopen(name,mode)
char *name;
char *mode;
{
 FILE *f;
 extern int errno;
 extern char *sys_errlist[];
 extern int sys_nerr;
 char *errmess;
 if ((f=fopen(name,mode)) == NULL) {
 (void) fprintf(stderr,"*** ERROR *** Cannot open
'%s'!\n",name);
 if (errno <= sys_nerr)
 errmess = sys_errlist[errno];
 else
 errmess = "Unknown error!";
 (void) fprintf(stderr,"************* Reason: %s\n",errmess);
 exit(1);

67

 }
 return(f);
}

/* Compare two events -- used for the qsort c-library function */
int compare(event *one, event *two)
{
 return (one->time_stamp - two->time_stamp)
}

/* suspend the program until the time is up for the event */
waitfor(long currtime)
{
static ulong last_event = 0;
struct timeval tv;
ulong usecs;

 if (last_event == 0) {
 last_event = currtime;
 return;
 }
 usecs = currtime - last_event;
 last_event = currtime;
 tv.tv_sec = usecs/1000000;
 tv.tv_usec = usecs % 1000000;
 select(0,0,0,0, &tv);
}

/* print errors in the MIDI file */
error(s)
char *s;
{
 fprintf(stderr,"Error: %s\n",s);
}

/* Print the header information regarding MIDI format, tracks and tempo */
txt_header(format,ntrks,division)
{
 printf("Header format=%d ntrks=%d
division=%d\n",format,ntrks,division);
}

txt_trackstart()
{
 printf("Track start\n");
}

txt_trackend()
{
 printf("Track end\n");
}

/* Handle key off events - Refer to MIDI opcode chart */
txt_noteon(chan,pitch,vol)
{
 prtime();
 printf("Note on, chan=%d pitch=%d vol=%d\n",chan+1,pitch,vol);
 midievent[current_event].data0 = chan;
 midievent[current_event].data1 = pitch;
 midievent[current_event].data2 = vol;
 midievent[current_event++].bytes = 3;

68

}

/* Handle key on events - Refer to MIDI opcode chart */
txt_noteoff(chan,pitch,vol)
{
 prtime();
 printf("Note off, chan=%d pitch=%d vol=%d\n",chan+1,pitch,vol);
 midievent[current_event].data0 = chan;
 midievent[current_event].data1 = pitch;
 midievent[current_event].data2 = vol;
 midievent[current_event++].bytes = 3;
}

/* Handle key pressure event - Refer to MIDI opcode chart */
txt_pressure(chan,pitch,press)
{
 prtime();
 printf("Pressure, chan=%d pitch=%d press=%d\n",chan+1,pitch,press);

}

/* Handle control change events - Refer to MIDI opcode chart */
txt_parameter(chan,control,value)
{
 prtime();
 printf("Parameter, chan=%d c1=%d c2=%d\n",chan+1,control,value);
 midievent[current_event].data0 = chan;
 midievent[current_event].data1 = control;
 midievent[current_event++].data2 = value;
}

/* Handle pitch bend - Refer to MIDI opcode chart */
txt_pitchbend(chan,msb,lsb)
{
 prtime();
 printf("Pitchbend, chan=%d msb=%d lsb=%d\n",chan+1,msb,lsb);
 midievent[current_event].data0 = chan;
 midievent[current_event].data1 = msb;
 midievent[current_event].data2 = lsb;
 midievent[current_event++].bytes = 3;
}

/* Handle program change events - Refer to MIDI opcode chart */
txt_program(chan,program)
{
 prtime();
 printf("Program, chan=%d program=%d\n",chan+1,program);
 midievent[current_event].data0 = chan;
 midievent[current_event].data1 = program;
 midievent[current_event++].bytes = 2;
}

/* Handle channel pressure events - refer to MIDI opcode chart */
txt_chanpressure(chan,press)
{
 prtime();
 printf("Channel pressure, chan=%d pressure=%d\n",chan+1,press);
 midievent[current_event].data0 = chan;
 midievent[current_event].data1 = press;
 midievent[current_event++].bytes = 2;
}

69

/* Handle sysex events - Refer to MIDI opcode chart */
txt_sysex(leng,mess)
char *mess;
{
 prtime();
 printf("Sysex, leng=%d\n",leng);
}

/* Unrecognized meta events in the MIDI file - flag warnings */
txt_metamisc(type,leng,mess)
char *mess;
{
 prtime();
 printf("Meta event, unrecognized, type=0x%02x leng=%d\n",type,leng);
}

txt_metaspecial(type,leng,mess)
char *mess;
{
 prtime();
 printf("Meta event, sequencer-specific, type=0x%02x
leng=%d\n",type,leng);
}

txt_metatext(type,leng,mess)
char *mess;
{
 static char *ttype[] = {
 NULL,
 "Text Event", /* type=0x01 */
 "Copyright Notice", /* type=0x02 */
 "Sequence/Track Name",
 "Instrument Name", /* ... */
 "Lyric",
 "Marker",
 "Cue Point", /* type=0x07 */
 "Unrecognized"
 };
 int unrecognized = (sizeof(ttype)/sizeof(char *)) - 1;
 register int n, c;
 register char *p = mess; if (type < 1 || type > unrecognized
)
 type = unrecognized;
 prtime();
 printf("Meta Text, type=0x%02x (%s)
leng=%d\n",type,ttype[type],leng);
 printf(" Text = <");
 for (n=0; n<leng; n++) {
 c = *p++;
 printf((isprint(c)||isspace(c)) ? "%c" : "\\0x%02x" , c);
 }
 printf(">\n");
}

txt_metaseq(num)
{
 prtime();
 printf("Meta event, sequence number = %d\n",num);
}

txt_metaeot()

70

{
 prtime();
 printf("Meta event, end of track\n");
}

txt_keysig(sf,mi)
{
 prtime();
 printf("Key signature, sharp/flats=%d minor=%d\n",sf,mi);
}

txt_tempo(tempo)
long tempo;
{
 prtime();
 printf("Tempo, microseconds-per-MIDI-quarter-note=%d\n",tempo);
}

txt_timesig(nn,dd,cc,bb)
{
 int denom = 1;
 while (dd-- > 0)
 denom *= 2;
 prtime();
 printf("Time signature=%d/%d MIDI-clocks/click=%d
32nd-notes/24-MIDI-clocks=%d\n",
 nn,denom,cc,bb);
}

/* Parse the SMPTE time stamp and print the information */
txt_smpte(hr,mn,se,fr,ff)
{
 prtime();
 printf("SMPTE, hour=%d minute=%d second=%d frame=%d fract-frame=%d\n",
 hr,mn,se,fr,ff);
}

txt_arbitrary(leng,mess)
char *mess;
{
 prtime();
 printf("Arbitrary bytes, leng=%d\n",leng);
}

prtime()
{
 printf("Time=%ld ",Mf_currtime);
}

/* Initialize functions - refer to midifile.h for details */
initfuncs()
{
 Mf_error = error;
 Mf_header = txt_header;
 Mf_starttrack = txt_trackstart;
 Mf_endtrack = txt_trackend;
 Mf_on = txt_noteon;
 Mf_off = txt_noteoff;
 Mf_pressure = txt_pressure;
 Mf_controller = txt_parameter;
 Mf_pitchbend = txt_pitchbend;

71

 Mf_program = txt_program;
 Mf_chanpressure = txt_chanpressure;
 Mf_sysex = txt_sysex;
 Mf_metamisc = txt_metamisc;
 Mf_seqnum = txt_metaseq;
 Mf_eot = txt_metaeot;
 Mf_timesig = txt_timesig;
 Mf_smpte = txt_smpte;
 Mf_tempo = txt_tempo;
 Mf_keysig = txt_keysig;
 Mf_sqspecific = txt_metaspecial;
 Mf_text = txt_metatext;
 Mf_arbitrary = txt_arbitrary;
}

72

Music Programming

Introduction

This section describes the programming of different kinds of music and MIDI related applications
using OSS. These include full featured MIDI sequencers as well as simpler MIDI playback and
recording programs. The MIDI programming interfaces provided by OSS are based on events such
as key press and key release. The applications using these interfaces don't produce the audio data sent
to the speakers themselves. Instead they control some kind of hardware (synthesizers) which perform
the sound generation. For example, a MIDI playback application can send note on and off messages
to an external MIDI synthesizer or keyboard which is connected to a MIDI port using a MIDI cable
(the MIDI device can be internal to the computer, too).

Another approach is that the application does all this itself and produces a stream of audio samples.
These samples are sent directly to /dev/dsp. This kind of approach is used by some well-known MIDI
and module players such as Timidity and Tracker. Implementing this kind of application is beyond
the scope of this guide.

The basic foundation behind the music programming interfaces of OSS is the MIDI 1.0 specification.
While the API provided by OSS may look different from MIDI, there are a lot of similarities. Most
events and parameters defined by the OSS API directly follow the MIDI specification. The few
differences between OSS API and MIDI are extensions defined by OSS. These extensions make it
possible to control built-in synthesizer (wave table) hardware in a way which is not possible or
practical with plain MIDI. When applicable, the OSS API follows the General MIDI (GM) and
Yamaha XG specifications which further specify how things work.

You should have some degree of understanding of the MIDI and General MIDI specifications (the
more the better) before proceeding with this section. The official MIDI specification is available
from the MIDI Manufacturers Association (MMA). Their web site (http://www.midi.org) contains
some online information. Additional information can be found on various Internet sites as well as
from several MIDI related books. Information about the XG MIDI specification is available from
Yamaha (http://www.ysba.com).

Midi And Music Pro gramming Interfaces Provided By OSS

Open Sound System provides three different device interfaces for MIDI and music programming.
Each of them are intended for a slightly different use.

Fundamentals Of /dev/music

MIDI (music) is a highly real-time process. An experienced listener can pick very minor timing
(rhythm) errors from the music being listened to, which makes timing accuracy one of the main goals
of the OSS implementation. Unfortunately, general purpose (multiuser and multitasking) computer

73

systems are not well suited to this kind of tasks. For this reason OSS has been implemented in a way
which makes timing precise even in highly loaded systems.

The key idea behind /dev/music and /dev/sequencer interfaces is to make the application and the
hardware work asynchronously. This is implemented by separating the application and the playback
logic using large buffers. The buffer can hold enough playback data for several seconds. Since the
playback process occurs asynchronously in the background, the application can do other processing
(graphics updates, for example) without the need to babysit the music playback. The only
requirement is that it should write new data before the queue drains completely and causes audible
timing errors. In a similar way, input data is queued until the application has time to read it from the
buffer.

Queues and Events

The central part of the /dev/music and /dev/sequencer APIs is queuing. There is a queue both for
playback and recording. Everything written to the device is first placed at the tail of the playback
queue. The application continues it's execution immediately after the data is put on the queue. This
happens immediately except in situations where there is not enough space in the queue for all the
data. In this case the application blocks until some old data gets played.

It's very important to notice that the playback is not complete when the write call returns. The
playback process still continues in the background until all data has been played. This delay depends
on timing information included in the playback data and can sometimes be several minutes (even
hours or days in some cases). Even after the output buffer has drained, some notes not being
explicitly stopped may continue playing (infinitely) until the application writes more data containing
the note off command for this note. It's very important to understand this asynchronous behavior of
the API. Even when the application tells the playback engine to wait some time (even hours) the
associated write may return immediately. The application never waits until the requested time is
occurred. After you understand this and have read the MIDI specification you know most the
important concepts regarding /dev/music and /dev/sequencer programming.

Similarly, all input data is first appended to the recording queue where it sits until the application
reads them off. There is embedded timing information in the data read from the device file which the
application should analyze to acquire the actual time of the event.

The data written to or read from the device file is organized as a stream of events. Events are records
of 8 or 4 bytes containing a command code and some parameter data. When using /dev/music all
events are 8 bytes long. With /dev/sequencer some events are 4 bytes long (mainly for compatibility
reasons with older software). Formatting of these events is defined in a document available in our
web site (http://www.opensound.com/pguide/events.html). However, applications should never
create the event records themselves. Instead they should use the API macros defined later in this
chapter.

The playback engine always processes the events in the order they are written to the device.

74

However, there is an ioctl call that can be used to send events immediately (ahead of the queued data)
to the engine. This feature is intended to be used for playing real-time events that occur in parallel
to the pregenerated event stream stored in the playback queue.

There are two main types of events. Timing events are commands that control timing of the playback
process. They are also included in the recording data before input events (if the time has changed
since the previous received event). The playback engine uses these events to delay playback as
instructed by the application. The playback engine maintains absolute time since starting the
playback (the application can restart the timer whenever it likes). When it encounters a timing event
it computes the time when the subsequent event needs to be processed. It then suspends the playback
process until the real-time timer gets incremented to this value. After that moment, the playback
process continues by executing the next event in the queue (which can sometimes be another timing
event).

When an input event is received from one of the devices (usually MIDI ports) the driver writes a time
stamp event containing the current real time to the input queue and then appends an event
corresponding to the data received from the device. However, the timestamp is written only if it's
time is different from the previously received event (to prevent the input queue from filling up
unnecessarily in case of sudden input bursts). Finally, the application reads both these events from
the queue when it has time to process the input queue. It's possible for the application to merge the
newly received input events with the old playback data based on these timestamps.

There is a fundamental difference in timing behavior between /dev/sequencer and /dev/music. The
/dev/sequencer device uses fixed timing based on the resolution of the system timer. In most cases
the system timer ticks once every 1/100th of second (100 Hz). However in some types of systems
this rate is different (such as 1000 Hz). It is the application's responsibility to check the timing rate
before using the device. The /dev/music device uses an adjustable timer which supports selecting
different tempos and timebases.

The second main type of event is active events. These events are played whenever they reach the
head of the playback queue. They are used mainly for sound generating purposes but also for
changing various other parameters. These events are instantaneous by definition (they don't consume
any time). However, in some cases they may cause some processing delays, for example when a byte
is sent to a MIDI port whose hardware level output buffer is full. When no timing events are present
in the buffer, the playback engine plays all active events as fast as it can. The same thing also
happens when timing events have already been expired when they are written to the device file.

MIDI Ports and Synthesizer Devices

The /dev/music and /dev/sequencer APIs are based on devices. There can be from 0 to N devices in
the system at the same time. The API differentiates between these devices by using unique device
numbers. It's important to notice that all these devices can be used at the same time. For some reason
it looks like most applications using this API use only one device at the same time (which is usually
selected using a command line parameter). There are two main types of devices, described in the

75

following sections.

MIDI Ports

MIDI ports are serial communication ports that are present on almost every sound card. Usually they
are called MPU401 (UART) devices. There are even dedicated (professional) MIDI only cards that
don't have audio capabilities at all. A MIDI port is just a dumb serial port which doesn't have any
sound generation capabilities or other intelligence itself. All it does is provide the capability to
connect to an external MIDI device using standard MIDI cabling. An external MIDI device can be
a full featured MIDI keyboard or a rack mounted tone generator without a keyboard. The MIDI cable
interface can also be used to control almost any imaginable device from a MIDI controlled mixer or
flame thrower to a washing machine. The MIDI interface is simply used to send and receive bytes
of data which control the devices connected to the port. It's possible to have an almost unlimited
number of devices on the same MIDI interface by daisy-chaining them or by using external MIDI
multiplexing devices. So in practice, a command sent to the MIDI cable may get processed by an
unlimited number of devices. Each of them react to the command depending on their internal
configuration.

Most sound cards have a so-called wavetable connector on them. This connector can be used to
connect a MIDI daughter card. Actually, the wavetable connector is just a branch of the MIDI
interface of the parent sound card. Everything written to the MIDI port gets sent both to the wave
table daughter card and to the MIDI connection port (usually shared with a joystick port) on the back
of the sound-card. Another way to add MIDI devices to a sound card is to solder a MIDI chip on the
card itself. In practice this doesn't differ from the daughter card interface in any way.

The common thing between the various ways to implement MIDI devices is that OSS sees just a port
which can send and receive MIDI data. In practice it doesn't know anything about the devices
connected to the port so it doesn't care about it. It's possible that there are no devices or even a cable
connected to the port. In this case playback using this port doesn't generate any sound which may
confuse some users.

Another common point between all devices connected to MIDI ports is that they are self contained.
The devices contain all the necessary instrument (patch) data. There is no need for the application
to worry about so called patch caching when using MIDI ports.

Internal Synthesizers

Synthesizer devices are sound chips (usually based on wave table or FM synthesis) that are always
mounted directly on the sound card or system's motherboard. The other main difference is that they
provide tighter connection to the OSS driver. OSS has direct control of every hardware level feature
of the synth chip while devices connected to a MIDI port can be controlled only by sending MIDI
messages to the port. This means that synth devices have usually some capabilities beyond ones
provided by plain MIDI (however this will not necessarily be true in the future). The drawback is that
both OSS and the application have additional responsibilities which make use of the (old)

76

/dev/sequencer API very tricky with them. For this reason, use of the /dev/sequencer interface is
strongly discouraged. The /dev/music API fixes most of these problems but leaves some additional
tasks such as so called patch caching to the application (which will be described later in this chapter).

The currently supported synthesizer chips are the following:

1. Yamaha OPL2/OPL3 FM synthesizer. The OPL2 chip was used in the first widely used
sound card (AdLib) in the late 80s. OPL3 is it's successor, originally introduced in the
SoundBlaster Pro and still widely used for DOS games compatibility in almost every sound
card. FM synthesis provides rich capabilities to produce synthetic sounds. However, it's very
difficult to emulate acoustic instrument sounds using it. In addition, the OPL3 chip has a very
limited amount of simultaneous voices which makes it practically obsolete. OPL4 is a
combined FM and wave table sound chip compatible with OPL3.

2. Gravis Ultrasound (GUS) was the first wave table based sound card on the market. It
provides the capability to play up to 32 simultaneous voices by synthesizing them from wave
table samples stored on it's on board RAM (up to 8 MB in the latest models but just 512K
in the original one). The wave table capability made this card very useful for playing so
called module (.MOD, etc) music using 386 and 486 computers of the early 90s. However,
major advances in CPU speeds have made this approach very impractical when compared
to mixing in software (except when a very large number of voices are used at the same time).
The main problem with GUS is it's limited memory capacity which doesn't permit loading
the full GM patch set simultaneously. This means that applications supporting GUS must be
able to do patch loading/caching. The driver interface originally developed for GUS defines
a de facto API which is supported by other wave table device drivers (of OSS) too. This
means that programs written for GUS work also with the other ones with some minor
modifications.

3. Emu8000 is the wave table chip used on SoundBlaster 32/63/AWE cards. It's very similar
with GUS but provides a GM patch set on ROM. This means that patch loading/caching is
not necessary (but still possible).

4. SoftOSS is a software based wave table engine by 4Front Technologies. It implements the
OSS GUS API by doing the mixing in software. This makes it possible to use any 16 bit
sound card (without wave table capabilities) to play with wave table quality instruments.
However this mixing process consumes CPU cycles and system RAM which can cause some
problems with performance critical applications and/or on underconfigured systems.

In addition to the above, OSS supports some wave table chips which work as MIDI port type
devices.

Differences Between Internal Synthesizer and MIDI Port Devices

There is no fundamental difference between these two device types when using the /dev/music

77

interface. The only practical difference is that the internal synth devices need some patch
management capabilities from the application. Together with libOSSlib these differences are rather
minimal.

However, the situation is very different with /dev/sequencer. In fact there is nothing common with
these device types. There are completely different interfaces for both of these devices. In addition
there are some differences between OPL3 and wave table devices with /dev/sequencer which make
it difficult to use. For this reason using the /dev/sequencer interface is not recommended.

The /dev/music and /dev/sequencer API acts as a multiplexer which dispatches events to all devices
in the system. The application merges the events going to all devices to the same output stream and
the playback engine sends them to the destination device. When recording it places input from all
input devices to a common input queue where the application picks them (the application should be
prepared to handle merged input from multiple devices or to filter the unnecessary data based on the
source device number.

All devices known by the driver are numbered using an unique number between 0 and
number_of_devices - 1. However, the numbering is slightly different depending on the device file
being used. With /dev/sequencer separate numbering is used for internal synthesizer devices and
MIDI ports while /dev/music knows only synthesizer devices (MIDI ports are masqueraded as synth
devices too). More information about device numbering will be given in the programming section.

Instruments and Patch Caching

The common feature between all MIDI and synthesizer devices is that they produce sound
synthetically. Very often they emulate other (acoustic) instruments but many devices can create fully
artificial instrument sounds too. Practically all devices are multitimbral which means that they can
emulate more than one instrument. Switching between different instruments/programs is done using
MIDI program change messages (actually it's equivalent in the OSS API).

Programs are numbered between 0 and 127. The meanings of these program numbers are determined
(freely) by the playback device. However in practice all modern devices follow the General MIDI
(GM) specification which binds the program numbers to fixed instruments so that, for example, the
first instrument is an acoustic piano. It should be noted that in OSS (just like in the MIDI protocol)
device numbering starts from 0, however in many tables and books the numbering starts from 1.

OSS assumes that the devices are GM compatible and that the application using the API is GM
compatible too. The instrument and program numbers are defined to be GM compatible. However,
it's possible for the application to use any other numbering scheme provided that the devices being
used support it.

To be able to produce any sound the synthesized device needs some kind of definition for the
instrument. The exact implementation depends on the type of the device. For example, with devices
using FM synthesis (OPL2/3) the instrument is defined by a set of few parameters (numbers).

78

Devices based on wave table synthesis use prerecorded instrument samples and some additional
control information. The information required for one instrument by a particular instrument is called
a patch.

In most cases all the instrument information is stored permanently in the device (for example on
ROM chips). In this case the instruments are always there and the playback application doesn't need
to care about this. It's usually possible to the application to modify the instruments or even to create
new ones but it's beyond the scope of this guide. However there are devices that don't have
permanently installed instruments. They just have a limited amount of memory in which the
instrument definitions need to be loaded on demand. This process is called patch caching. The OSS
API defines a simple mechanism which the application should use to support patch caching devices.
The core of this mechanism is OSSlib library which can be linked with the application.

Notes

The main task in playing music using the /dev/music and /dev/sequencer interface is playing notes.
For this purpose there are two messages in the MIDI specification. The note on message is used to
signal the condition where a key was pressed on the keyboard. The message contains information
about the key that was pressed and the velocity it was pressed. When receiving this message the
MIDI device behaves just like an analog keyboard instrument (such as piano) by sounding a voice.
The pitch of the voice is determined by the key number and the volume is determined by the velocity
with which the key was hit. Other characteristics of the voice depend on the instrument that was
selected before the note on message.

After a note on message, the sound starts playing on it's own. Depending on the instrument
characteristics it may decay immediately or continue playing indefinitely. In any case, each note on
message should be followed by a note off message for the same note number. After this message the
voice will decay according to the instrument characteristics (it may even already have decayed prior
the note off message).

Both the note on and the note off message contain a note number (0 to 127). The note number is
simply the number of the key on the keyboard. A value of 60 specifies the middle C.

The OSS API defines events for all MIDI messages including the note on and note off ones.

Voices and Channels

At the lowest level all devices produce sounds using a limited number of operation units called
voices. To play a MIDI note the device usually needs one voice but it's possible that it uses more of
them (this is called layering). The number of simultaneously voices (degree of polyphony) is limited
by the number of voices available on the device. With primitive devices the number of voices can
be very low (9 with OPL2 and 18 with OPL3). Most devices support 30 or 32 voices. Some more
recent devices support 64 or 128 voices which is the future trend.

79

When using the /dev/sequencer API the application needs to know how many voices are supported
by the particular device. It also needs some kind of mechanism for allocating voice operators for the
notes to be played. The voice number needs to be used as a parameter in all note related events sent
to the driver. This task is usually very complicated due to need to handle out of voices situations. For
this reason it's recommended to use the /dev/music interface which handles all of this automatically.

The /dev/music API is based channels, just like MIDI. There are 16 possible channels numbered
between 0 and 15. It's possible to assign a separate instrument to each channel. Subsequent notes
played on this channel will be played using the instrument previously assigned to the channel. Any
number of notes can be playing on each channel simultaneously. However, the number of notes
actually playing depends on the number of voices supported by the device. When using /dev/music
there is no need to do the voice allocation by the application. The application just tells which notes
to play on which channels and the device itself takes care of the voice allocation. This makes
/dev/music significantly easier to use than /dev/sequencer.

Controlling Other Parameters

The MIDI specification contains some other messages in addition to the basic note on and note off
messages. They can be used to alter the characteristics of notes being played and they usually work
on a channel basis (i.e. they affect all notes played on a particular channel). Most of these functions
are implemented using MIDI control change messages. The OSS API contains an event for all
defined MIDI controllers.

Programming /dev/music and /dev/sequencer

In this guide we handle mainly /dev/music programming. The differences between /dev/music and
/ dev/sequencer interfaces will be described shortly whenever they are encountered in the text.

Initial Steps

This guide is written for OSS version 3.8 or later. There are a few additions made to the OSS API
in version 3.8 which mean that certain features will not work with earlier OSS versions (mainly
OSSlib). In any case, at least version 3.5 of OSS is required (earlier versions are not supported any
more).

For simplicity reasons it's assumed that the OSSlib interface is being used. OSSlib is a library that
handles patch caching in an almost transparent way. With OSSlib the application doesn't need to be
aware of the details of the particular synthesizer hardware being used.

The file libOSSlib.a (or libOSSlib.so in some operating systems) is distributed as a part of the
commercial OSS software. Another way to obtain it is to download snd-util-3.8.tar.gz (or later) from
ftp://ftp.opensound.com/ossfree and to compile it locally. However, this is recommended only with
OSS/Free. To be able to compile OSSlib you should have OSS 3.8 or later installed on the system.
It's also possible to compile OSSlib or applications using it by obtaining the <soundcard.h> file from

80

the OSS 3.8 distribution but this is not recommended or supported.

To use OSSlib you should use the -DOSSLIB -I/usr/lib/oss/include -L/usr/lib/ oss -lOSSlib options
when compiling and linking the application. For example:

 cc -DOSSLIB -I/usr/lib/oss/include -L/usr/lib/oss -lOSSlib test.c -o test

It's fairly easy to make the application usable both with and without OSSlib by using an #ifdef
OSSLIB directive in the places where there are differences between these cases.

An application using the /dev/sequencer or /dev/music APIs requires some support code to be added
in the application. All of this is present in the sample program given later in this chapter. This
additional code is required to support buffering used by the SEQ_* macros defined in
<soundcard.h>. The following has to be present:

1. <sys/soundcard.h> must be included in each source file that uses the API.

2. Define for the buffer being used by the API.

3. Definition of the seqbuf_dump() routine in case you are not using OSSlib (OSSlib contains
this routine).

/*
 * Public domain skeleton for a /dev/music compatible OSS application.
 *
 * Use the included Makefile.music to compile this (make -f Makefile.music).
 */

/*
 * Standard includes
 */

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/soundcard.h>

/*
 * This program uses just one output device which is defined by the following
 * macro. However the OSS API permits using any number of devices
 * simultaneously.
 */

#define MY_DEVICE 0 /* 0 is the first available device */

/*
 * The OSS API macros assume that the file descriptor of /dev/music
 * (or /dev/sequencer) is stored in variable called seqfd. It has to be
 * defined in one source file. Other source files in the same application
 * should define it extern.

81

 */

int seqfd=-1;

/*
 * A buffer needs to be allocated for buffering the events locally in
 * the program (prior writing them to the device file). The SEQ_DEFINEBUF
 * macro can be used to define the buffer. The argument is the size of the
 * buffer (in bytes). 1024 is a good size (128 events).
 *
 * Note that SEQ_DEFINEBUF() should be used only in one source file in each
 * application. In other source files you should use SEQ_USE_EXTBUF().
 */
#define BUFFSIZE 1024
SEQ_DEFINEBUF(BUFFSIZE);

/*
 * seqbuf_dump() routine is required only when OSSLib is NOT used. It's
 * purpose is to write buffered events to the device file.
 */
#ifndef OSSLIB
/*
 * NOTE! Don't ever define seqbuf_dump() in two source files or when OSSlib
 * is used. It may have unpredictable results.
 */
void seqbuf_dump ()
{
 if (_seqbufptr)
 if (write (seqfd, _seqbuf, _seqbufptr) == -1)
 {
 perror ("write /dev/music");
 exit (-1);
 }
 _seqbufptr = 0;
 }
#endif

Opening the Device

The music device file to be used needs to be opened in the beginning of the program. A normal open
call can be used for this (fopen or other buffered I/O routines should not be used). Select /dev/music
or /dev/sequencer depending on your needs. You need also to open OSSlib by calling OSS_init() in
case you use OSSlib.

int error, ndevices, tmp;

/*
 * First open the device file (/dev/music in this case but
 * /dev/sequencer will work in the same way). The device is
 * opened with O_WRONLY since we are only going to write. Use
 * O_WRONLY or O_RDWR if you need to use input (too).
 */

if ((seqfd=open("/dev/music", O_WRONLY, 0))==-1)
{
 perror("/dev/music");
 exit(-1);
}

82

/*
 * Now initialize OSSlib if required.
 */
#ifdef OSSLIB
if ((error=OSS_init(seqfd, BUFFSIZE)) != 0)
{
 fprintf(stderr, "Failed to initialize OSSlib, error %d\n", error);
 exit(-1);
}
#endif

After opening the device you should check what devices are
available. This can be done using the SNDCTL_SEQ_NRSYNTHS,
SNDCTL_SEQ_NRMIDIS, SNDCTL_SYNTH_INFO and SNDCTL_MIDI_INFO ioctl
calls which will be covered in detail later.

/*
 * Check that the (synth) device to be used is available.
*/

if (ioctl(seqfd, SNDCTL_SEQ_NRSYNTHS, &ndevices)==-1)
{
 perror("SNDCTL_SEQ_NRSYNTHS");
 exit(-1);
}

if (MY_DEVICE >= ndevices)
{
 fprintf(stderr, "Error: The requested playback device doesn't exist\n");
 exit(-1);
}

Writing Events

As said earlier, the /dev/music API is event based. In addition to a few ioctl() calls the only way to
use this API is by sending events to the device. To make this task easier a macro has been created
for each supported MIDI event. These macros are named SEQ_*() and they usually take one or more
parameters. For example the SEQ_START_NOTE(device, channel, note, velocity) macro is used
to send a MIDI key down message to the given device (synthesizer or MIDI port). This macro itself
doesn't write the event directly to the device file. Instead it appends the event after the previous ones
in programs local buffer. This local buffer was created using the SEQ_DEFINEBUF(size) macro in
the beginning of the program. The events are queued there until SEQ_DUMPBUF() macro is called
by the program or the local queue becomes full (in this case SEQ_DUMPBUF will be called
automaticly to prevent from overflow). SEQ_DUMPBUF just calls the seqbuf_dump() routine
defined by the program or OSSlib depending on the situation.

Due to this buffering the application should call SEQ_DUMPBUF() before it exits or before it
suspends writing new events for some reason (waiting for input).

The Minimal /dev/music Program

83

By combining the above four code fragments together you have all the necessary initialization code
required in a program using /dev/music or /dev/sequencer. All this program does is play a note using
the selected device. This program is also available in the samples.tar.gz package available from
ftp://ftp.opensound.com/ossfree.

/*
 * Setup timing parameters. The defaults may vary so set them
 * explicitly.
 */
tmp = 96;
if (ioctl(seqfd, SNDCTL_TMR_TIMEBASE, &tmp)==-1)
{
 perror("Set timebase");
 exit(-1);
}

tmp = 60;
if (ioctl(seqfd, SNDCTL_TMR_TEMPO, &tmp)==-1)
{
 perror("Set tempo");
 exit(-1);
}

/*
 * Next use OSSlib to cache the instrument (if required). This is
 * recommended to be done in advance (before SEQ_START_TIMER()) since
 * patch loading from disk to the device can be time consuming. Load
 * only the instruments that are required due to limited memory
 * capacity of certain devices.
 *
 * NOTE! OSSLib loads the instrument automaticly when SEQ_PGM_CHANGE
 * is called. Loading it in advance saves you from possible
 * delays associated with demand loading.
 */
SEQ_LOAD_GMINSTR(MY_DEVICE, 0); /* 0=Acoustic piano */

/*
 * Now we are ready to start playing. The first task is to start
 * the timer. This is mandatory stem since otherwise the timer
 * will never get started. It's extremely important to start the
 * timer just immediately before writing the first event. Doing
 * it too early will cause tempo problems in the beginning.
 */
SEQ_START_TIMER();

/*
 * Select the program/instrument 0 on the MIDI channel 0.
 */
SEQ_PGM_CHANGE(MY_DEVICE, 0, 0);

/*
 * Start the note (60=Middle C) on channel 0. Use 64 as velocity.
 */
SEQ_START_NOTE(MY_DEVICE, 0, 60, 64);

/*
 * Then have relative delay of 96 ticks. The delay is from the
 * previous timing event or from the time when SEQ_START_TIMER()
 * was called.
 */

84

SEQ_DELTA_TIME(96);

/*
 * Now stop the note. The sound will not stop immediately. The note
 * just starts decaying and fades off.
 */
SEQ_STOP_NOTE(MY_DEVICE, 0, 60, 64);

/*
 * Have a final delay of 1000 ticks. This gives the last note(s) time
 * to decay naturally. Closing the device without this delay just
 * aborts all voices prematurely.
 */
SEQ_DELTA_TIME(1000);

/*
 * Finally flush all events still in the local buffer (mandatory
 * step before closing the device or prior pausing the application.
 * It's the SEQ_DUMPBUF() call that actually writes the events to the
 * device.
 */
SEQ_DUMPBUF();
close(seqfd);
exit(0);
}

Reading input from /dev/music

+P�CFFKVKQP�VQ�RNC[DCEM�VJG��FGX�OWUKE�KPVGTHCEG�UWRRQTVU�TGEQTFKPI��6JG�DCUKE�KFGC�KU�VJCV�VJG

CRRNKECVKQP�TGCFU���D[VG�GXGPV�TGEQTFU�HTQO��FGX�OWUKE�CPF�KPVGTRTGVU�VJG�FCVC�EQPVCKPGF�KP�VJG

GXGPVU��(QT�RGTHQTOCPEG�TGCUQPU�KVNU�TGEQOOGPFGF�VJCV�VJG�CRRNKECVKQP�TGCFU�CU�OCP[�GXGPVU�CV�VJG

UCOG�VKOG�CU�KV�ECP�

6JG� GXGPV� GPEQFKPI� KU� FGHKPGF� KP� C� UGRCTCVG� FWEWOGPV� VJCV� KU� CXCKNCDNG� HTQO

JVVR���YYY�QRGPUQWPF�EQO�RIWKFG�GXGPVU�JVON��#�UKORNG�UCORNG�RTQITCO�HQT�TGCFKPI�GXGPVU�KU

CXCKNCDNG�KP�JVVR���YYY�QRGPUQWPF�EQO�RIWKFG�OWUKEKP�E�

0QVG�VJCV�VJG�VKOGT�OWUV�DG�UVCTVGF�DGHQTG�UVCTVKPI�VJG�TGEQTFKPI��1VJGTYKUG�VJG�VKOGT�YKNN�UVC[�KP

��CPF�PQ�VKOGT�GXGPVU�CTG�TGVWTPGF�VQ�VJG�CRRNKECVKQP��6Q�UVCTV�VJG�VKOGT�[QW�PGGF�VQ�YTKVG�VJG

5'3A56#46A6+/'4
��GXGPV�VQ�VJG�FGXKEG��*QYGXGT�UVCTVKPI�HTQO�155�XGTUKQP�������VJG�VKOGT

YKNN�DG�UVCTVGF�CWVQOCVKECNN[�YJGP�VJG�FGXKEG�KU�QRGPGF�YKVJ�1A4&10.;�HNCIU�

85

NOTE
In earlier versions of OSS the SoftOSS driver also enabled virtual mixer. Since OSS 3.9.1e this is
no longer true. Instead of SoftOSS you should configure the "Virtual Mixer" device. This will also
enable SoftOSS. Don't configure SoftOSS at the same time as the virtual mixer.

6JG�8KTVWCN�/KZGT

155�JCU�CP�QRVKQPCN�HGCVWTG�ECNNGF�UQHVYCTG�OKZKPI�YJKEJ�RGTOKVU�UKOWNVCPGQWU�RNC[DCEM�QH�WR�VQ

��CWFKQ�UVTGCOU��6JKU�HGCVWTG�KU�C�UGRCTCVGN[�RTKEGF�QRVKQP�CPF�CXCKNCDNG�QPN[�VQ�VJG�EWUVQOGTU�YJQ

JCXG�RWTEJCUGF�VJG�/+:�QRVKQP��6JG�UGXGP�FC[�GXCNWCVKQP�NKEGPUG�CNUQ�EQPVCKPU�VJKU�QRVKQP�

6Q�WUG�VJKU�QRVKQP�[QW�UJQWNF�HKTUV�GPCDNG�KV�D[�EQPHKIWTKPI�VJG�XKTVWCN�OKZGT�FTKXGT��6JKU�ECP�DG

FQPG�D[�CFFKPI�QPG�QH� VJG���(TQPV�8KTVWCN�/KZGT��FGXKEGU�WUKPI� VJG��#FF�PGY�ECTF�FGXKEG�

HWPEVKQP�QH�UQWPFEQPH�

#HVGT�VJG�UQHVYCTG�OKZKPI�FTKXGT�KU�KPUVCNNGF�VJG�CFFKVKQPCN���CWFKQ�FGXKEGU�YKNN�DG�UJQYP�CU�DGNQY

D[��ECV��FGX�UPFUVCV��

2: SoftOSS v1.2 CH #0
3: SoftOSS v1.2 CH #1
4: SoftOSS v1.2 CH #2
5: SoftOSS v1.2 CH #3
6: SoftOSS v1.2 CH #4
7: SoftOSS v1.2 CH #5
8: SoftOSS v1.2 CH #6
9: SoftOSS v1.2 CH #7

+P�VJG�CDQXG�ECUG�VJG�HKTUV�UQHVYCTG�OKZKPI�FGXKEG�KU�/dev/dsp 2 (/dev/audio 2) and the last
one is /dev/dsp 9 (/dev/audio 9). You can have up to 8 of these devices active at the same time.
Note that the real audio device (usually /dev/dsp 0) will not be available while any of the
software mixing devices are open. Also, the software mixing devices cannot be used while the actual
hardware device (/dev/dsp 0) is open.

To test the virtual mixer, get a couple of wav files (eg. sample1.wav and sample2.wav) and
type a command such as the following:

play -d/dev/dsp3 sample1.wav & play -d/dev/dsp4 sample2.wav &

At this point you should hear both the wav files playing simultaneously. Most applications open
/dev/dsp or /dev/dsp 0 by default. You can make the application use a virtual audio device by
simply changing the link /dev/dsp to point to /dev/dsp 3 or /dev/dsp 4 or any one the other
virtual audio devices. However, you cannot use the virtual audio device and the physical audio
device (/dev/dsp 0 and /dev/dsp 1) simultaneously. You will notice that there is degradation

86

of audio quality using the virtual audio device - this is because the driver does sample rate
conversion in software. In future versions of OSS there will be a new /dev/vdsp device that will
automatically assign an available virtual device to each application using /dev/vdsp . This will
mean that you won't have to manually assign a virtual audio device to each application.

87

SoftOSS

Introduction

Until today a special wave table soundcard has been required to play high quality MIDI music.
SoftOSS is a kernel module which permits doing the same using any inexpensive 16-bit soundcard
together with a sufficiently fast CPU (see the System requirements section).

SoftOSS is 100% compatible with the existing wave table API of OSS which has earlier been used
by the Gravis Ultra Sound (GUS) driver. This means that all Linux applications work without
modification with SoftOSS.

Technical Background

SoftOSS is a virtual wave table engine that is tightly integrated with the MIDI and audio
functionality of OSS. The SoftOSS engine uses CPU cycles to mix pre-recorded audio samples in
control of MIDI information coming from any application using /dev/sequencer or
/dev/music (formerly known as /dev/sequencer 2) device files. The resulting 16-bit stereo
audio data stream is then played using an ordinary (16-bit) soundcard (support for 8-bit sound cards
will be introduced later). Since the mixing is done inside kernel it doesn't suffer from other
processing activity in the system. For this reason it is possible to perform CPU intensive tasks at the
same time when using SoftOSS. Sound quality is as good as in a lightly loaded system (other tasks
just run slower depending on number of currently active SoftOSS voices/notes).

SoftOSS is fully compatible with the sound sample loading API originally developed for the GUS
driver of OSS. This means all applications which support loading samples to GUS will work with
SoftOSS without any changes.

The final version of SoftOSS will include a library called OSSlib which permits on demand loading
(patch caching) of wave table samples from any programs using the /dev/music
(/dev/sequencer) API of OSS. Together with changes made to <sys/soundcard.h >, this
library permits adding patch caching to existing applications using /dev/sequencer and
/dev/music with very minimal changes.

The first release of this OSSlib library will permit loading samples from pat format (GUS)
instrument files and from standard audio files (au, wav). Later versions will support other patch file
formats such as SoundFont (sf2). You will need a GUS compatible patch set to run SoftOSS.

A freeware version of this library will be released to permit developing OSS compatible applications
with OSS/Free. In addition the freeware library will permit using applications written for OSS to
work also with OSS/Free without recompiling.

Specification of the new /dev/music API will be released after development of OSSlib is

88

complete.

Applications of SoftOSS Technology

SoftOSS is mainly designed for playing MIDI music but it's well suited for some other applications
too, including:

1. Sound effects in games (not necessarily background music). Since the "mixing" is done at
real time priority inside kernel, it's possible to get timing precision and reliability that is not
possible with any kind of process based mixing. With SoftOSS sound effects will play
perfectly even in slightly under-configured machines. In addition, sound effects programming
using SoftOSS and OSSlib is "fire and forget". After an effect is started the application itself
doesn't need to worry about it. Of cause, the same is possible with a wave table card too. The
best thing is that SoftOSS is perfectly compatible with hardware wave table devices so
compatibility with SoftOSS ensures compatibility with wave table cards too.

2. Sound effects in simulators and similar applications. SoftOSS technology permits loading
practically unlimited amount (currently there is an artificial limit of 8 MB) into the memory
(it's limited just by amount of RAM installed in the system). Starting sounds is easy and it's
even possible to change it's volume and panning (3D support is planned in the future). As
with games, SoftOSS can later be replaced by a hardware wave table card without any
changes to the application. However with a limited number (4 to 8) of simultaneous voices
there is no benefit in using an expensive hardware wave table card.

3. Playback of pre-recorded messages, alerts, time signals and similar sounds. Future versions
of SoftOSS will even permit triggering this kind of special sounds from many different
applications at the same time.

System Requirements

Due to the high processing power requirements of software mixing SoftOSS is targeted to fast
machines only. With current (rather non-optimized) version it's possible to play 32 simultaneous
voices using 32 kHz sampling frequency using a P120 machine. However even this is better than the
sampling frequency that is possible at 32 voices using a popular wave table card (19.2 kHz). With
a 100 MHz PowerPC processor (RS6000/AIX) it's possible to get almost 32 simultaneous voices at
44.1 kHz.

For the above reason at least a P120 processor is recommended. However one can use SoftOSS with
any 486 class (or above) machine by decreasing the sampling frequency. OSS 3.8 permits selecting
a SoftOSS version which matches your CPU while configuring the device.

CPU power requirements of SoftOSS depends on concurrently playing notes (voices). You can use
44.1 kHz sampling frequency with any 486 class CPU as long as number of voices remains low. For
example playing a mod file using gmod should be possible with any machine.

89

Even in low-end 486 class machines, SoftOSS gives better MIDI playback quality than the standard
FM synth.

Using SoftOSS with a CPU that is too slow is not dangerous. Playback just becomes distorted (it
jumps like a broken vinyl record) and the system becomes rather unresponsive. However, the
situation returns back to normal after playback is stopped/interrupted or the number of concurrently
playing notes decreases below the system dependent limit.

At least 16 MB of RAM is required (32 MB recommended). SoftOSS stores the instrument samples
in the system's (physical) RAM. This means that there must be enough spare RAM on the system.
The current version of SoftOSS permits loading up to 8 MB of samples which means that using it
on machines with less than 16 MB RAM may not produce the desired performance. It is possible to
use SoftOSS on systems with less than 16 MB of RAM but care must be taken that too many
samples are not loaded. The final 3.8 version of SoftOSS will permit configuring the maximum
memory size which makes it safer to use in under-configured machines.

Limitations of SoftOSS

There are a few limitations in using SoftOSS. However, in most cases they are not significant.

SoftOSS allocates the first audio device (/dev/dsp0) for itself always when /dev/sequencer
or /dev/music are open. This means that it is not possible to play audio at the same time with
MIDI on machines with just one soundcard. /dev/dsp0 is still accessible when /dev/music and
/dev/sequencer are not open.

SoftOSS uses CPU time which may make it useless in some applications. For example, it is not
recommended to use it for playing background music in games. Depending on the degree of
polyphony (number of simultaneous notes) it may slow down the game seriously. Note that this is
not true with playing sound effects of games, which is a well-suited task for SoftOSS.

Most GUS compatible applications would be very confused if they detect two GUS compatible
devices on the same system. However, this is not a problem since GUS (particularly GUS PnP with
8 MB RAM) does everything that SoftOSS does (i.e. you don't need to use SoftOSS if you have a
GUS).

Getting SoftOSS

SoftOSS is included in the standard OSS software (currently there is no extra fee).

90

Save changes and Exit
Cancel changes and Exit
Add new card/device
Remove a card/device
Verify configuration
Exclude IRQ and DMA numbers
Autodetect soundcards
Security setup
Manual configuration
Install license file

Getting the Sound Patches

To use SoftOSS you will need to use a GUS compatible Linux application such as mplay or gmod.
You can get them from the OSS Applications page. With mplay , you need to copy the
public-domain MIDIA instrument files.

Configuring SoftOSS

Configuring SoftOSS is very easy. Run soundconf and you will be presented with a menu that
looks something like this:

If you have not added any sound cards yet (they should be listed above this menu), you should
configure it first by activating the "Add new card/device".

To add SoftOSS you just need to activate the "Add new card/device" function and select one of the
"4Front Tech. SoftOSS (for XXX)" entries where the XXX matches (roughly) your CPU. If you can't
decide between two or more entries, select the highest one. If it doesn't work (playback jumps), you
can start soundconf again to remove this one and to select a lower one.

After adding the SoftOSS engine and a 16-bit soundcard, save the configuration and start OSS using
the soundon command. Then execute "cat /dev/sndstat " and verify that there is at least one
audio device and the SoftOSS synth is listed (as shown below).

Audio devices:
0: Crystal audio controller (CS4236) (DUPLEX)

Synth devices:
0: SoftOSS

Now use the mplay program supplied with OSS (default is /usr/lib/oss/mplay) to play MIDI
files. Type "mplay # midifile.mid " (where # is the synth number under the Synth Devices
heading in the /dev/sndstat output.

91

Future Plans

The current version of SoftOSS is just a preview release. It doesn't contain all the features which are
planned to be included in future versions. The following are some examples:

1. Support for sample distribution formats used for distributing commercial instrument samples
and sound effects. SoundFont 2 will be the first format supported.

2. Support for streaming instruments. Streaming instruments permit playing of very large audio
files or computer generated sounds together with ordinary (shorter) samples which fit
completely in memory. Using streaming instruments will require some form of support by
the application but most of it will be handled by OSSlib.

3. Support for 3D voice position and various special effects (this will require faster CPUs than
currently available).

92

Advanced Programming Topics

DANGER!!!

The features that will be described in this section are potentially dangerous and should only be used
by engineers qualified by 4Front Technologies. There are no user serviceable parts inside.

For most features discussed here there is exactly one or at most few ways to use them. The remaining
unlimited number of ways are wrong. They may seem to work in the environment (sound hardware,
operating system and OSS version). However any difference in the environment may be enough to
break applications that don't do things in the right way.

Introduction

This chapter describes some features of OSS that are useful or even necessary when used in the right
place. However, they don't automatically make your application better if used in situations when they
are not necessary. Some of the features to be presented below don't work with all devices (full duplex
audio and direct DMA access, among others) or make your application very operating system
dependent (e.g. direct DMA access).

It's highly recommended that you avoid using any of the features described below as long as
possible. If you don't use them exactly in the right way your application will almost certainly fail
with some audio devices (professional ones) or even after a minor change in internals of OSS. By
using the features described in this section it's very easy to make your applicatuon to work only with
given soundcard and given OSS version under the right phase of moon.

Very rare audio applications actually need to care about any of the details described here. You need
them only if you are trying to sync audio with some external events such as graphics.

It is assumed that you have a full understanding of the features described in the Introduction and
Basic Audio sections of this guide. The features described here will work only if the guidelines
defined in the basic sections have been followed carefully.

Audio Internals

An application program doesn't normally access the audio hardware directly. All data being recorded
or played back is stored in a kernel DMA buffer while the device is accessing it. The application uses
normal read and write calls to transfer data between the kernel buffer and the buffer in the
application's data segment.

The audio driver uses an improved version of the so called double buffering method. In the basic
double buffering method there are two buffers. One of them is being accessed by the device while
the other is being read or written by the application. When the device finishes processing the first

93

buffer, it moves to the other one. This process is repeated as long as the device is in use. This method
gives the application time to do some processing at the same time as the device is running. This
makes it possible to record and play back without pauses.

The amount of time the application can spend on processing the buffer half depends on the buffer
size and the data rate. For example, when a program is recording audio using 8 kHz/8-bit/mono
sampling, the data rate is 8 kilobytes/second. If there is 2*4 kilobytes of buffer, it gives the
application more than 0.5 seconds of time to store the data to disk and to come back to read from the
device. If it spends more than 0.5 seconds, the buffer overruns and the driver has to discard some
data. 0.5 seconds is adequate time to store 4K of data to disk. However, things become more
complicated when the data rate is increased. For example, with audio CD quality the data rate is 172
kilobytes/second and the available time is just 23 milliseconds. This is about the same as the worst
case seek time of normal disk drives, which means that recording is likely to fail. Better results can
be achieved by using larger buffers, but it increases latencies related to the buffering.

The method used by the audio driver of OSS could be called multi-buffering. In this method the
available buffer space is divided into several equally sized blocks known as fragments. In this way
it is possible to increase the available buffer size without increasing the latencies related to the
buffering. By default, the driver computes the fragment size so that latencies are about 0.5 seconds
(for output) and about 0.1 seconds (for input) using the current data rate. There is an ioctl call for
adjusting the fragment size in the case that the application wants to use a different size.

Normal Operation When Writing to the Device

When the program calls write the first time after opening the device, the driver performs the
following steps:

1. Programs the audio hardware to use the sampling parameters (speed, channels and bits) the
program has selected.

2. Computes a suitable size for a buffer fragment (only if the program hasn't requested a
specific fragment size explicitly).

3. Starts filling the first buffer fragment with the data written by the application.

4. If enough data was written to fill the first fragment completely, the device is started to play
it. Note that in most cases OSS will wait until two full fragments have been written before
starting the playback. This extra fragment makes the application more immune against
random variances in system load.

5. Finally, the driver copies rest of the data to the buffer. If all buffer fragments have been used,
the application is put to sleep until the first buffer gets played completely and the device
raises an hardware interrupt (he physical explanation of fragment size is that it's the interrupt
interval used by the device). At this moment the application will be woken up to resume it's

94

NOTE
At this point it is possible that the device was not started to play the data. This happens if the
application doesn't write enough data to fill one buffer fragment completely. There is no reason to
worry about this if the application is going to write more data to the device as soon as it can, or if
it closes the device immediately. However (only) if there is going to be a pause of arbitrary length,
the application should call the ioctl SNDCTL_DSP_POST to activate the playback.

operation.

When the application calls write a second time, the data is simply stored in the playback buffer
and the internal pointers of the driver are updated accordingly. If the application has attempted to
write more data than there is currently free space for in the buffer, it will be forced to wait until one
fragment gets completely played by the device. This is the normal situation with programs that work
properly. They usually write data at least slightly faster than the device plays it. Sooner or later they
get the buffer completely filled and the driver forces them to work at the same speed as the device.

A playback underrun situation occurs when the application fails to write more data before the device
gets earlier data completely played. This kind of underrun occurs for one of three reasons.

1. The application needs too much time for processing the data. For example, the program is
being run on a slow CPU or there are many other applications using the processor. Also,
loading audio data from a floppy disk is likely to fail. It is usually very difficult if not
impossible to find a solution to this kind of underrun problem. Possibly only rewriting parts
of the program in assembly language could help.

2. There are slight variations in the amount of CPU time the application gets. In this way an
application which normally works fast enough may randomly run out of time.

3. The application attempts to work too much in real time. Having less data in the output buffer
decreases delays in games and other real time applications. However, the application must
take care that it always writes new data before earlier written samples get completely played.

The effect of underrun depends on the audio device. However, in almost every case an audible defect
is caused in the playback signal. This may be just a short pause, a click or a repeated section of
signal. Repeated underruns may cause very strange effects. For example 100 underruns per second
sometimes causes a signal having a frequency of 100 Hz (it could be very difficult to find the reason
which causes this effect).

Normal Operation When Reading from the Device

When the program calls read the first time after opening the device, the driver performs the following
steps:

95

1. Programs the audio hardware to use the sampling parameters (speed, channels and bits) the
program has selected.

2. Computes a suitable size for a buffer fragment (only if the program doesn't have requested
specific fragment size explicitly).

3. Activates the recording process on the device.

4. Puts the application to sleep until the first fragment of data gets recorded by the device. Note
that the application will wait until the whole fragment gets recorded even if it attempted to
read just one byte.

5. After recording of the first fragment is ready, it's contents, up to the amount requested by the
application, will be copied to the application's buffer variable.

6. The read call returns after all bytes requested by the application have been read. If there is
more data in the driver's buffer, it is left there.

Subsequent reads work just like the first one except that the device doesn't need to be started again.

A recording overrun situation occurs if the device fills the recording buffer completely. If this
happens, the device is stopped and further samples being recorded will be discarded. Possible reasons
for recording overruns are very similar to the causes of playback underruns. A very common
situation where playback overrun may occur is recording of high speed audio directly to disk. In
Linux this doesn't work except with very fast disk drives (in other environments this should not be
a problem).

Buffering - Improving Real-Time Performance

Normally programs don't need to care about the buffering parameters of audio devices. However,
most of the features presented in this document have been designed to work with full fragments. For
this reason your program may work better if it reads and writes data one buffer fragment at time
(please note that this is not normally required).

Determining Buffering Parameters

The driver computes the optimum fragment size automatically depending on sampling parameters
(speed, bits and number of channels) and amount of available memory. Application may ask the
buffer size by using the following ioctl call:

int frag_size;
if (ioctl(audio_fd, SNDCTL_DSP_GETBLKSIZE, &frag_size) == -1)
 error();

96

NOTE
This ioctl call also computes the fragment size, in case it has not already been done. For this
reason you should call it only after setting sampling parameters or setting fragment size explicitly.

NOTE
Some old audio applications written for Linux check that the returned fragment size is between
arbitrary limits (this was necessary with version 0.1 of the driver). New applications should not
make this kind of test.

The fragment size in bytes is returned in the frag_size argument. The application may use this
value as the size when allocating (malloc) a buffer for audio data and the count when reading from
or writing to the device.

The above call returns the static fragment size. There are two additional calls which return
information about the live situation.

audio_buf_info info;
ioctl(audio_fd, SNDCTL_DSP_GETISPACE, &info);
ioctl(audio_fd, SNDCTL_DSP_GETOSPACE, &info);

The above calls return information about output and input buffering, respectively. The
audio_buf_info record contains the following fields:

int fragments;

Number of full fragments that can be read or written without blocking. Note that this field is reliable
only when the application reads/writes full fragments at time.

int fragstotal;

Total number of fragments allocated for buffering.

int fragsize;

Size of a fragment in bytes. This is the same value than returned by
ioctl(SNDCTL_DSP_GETBLKSIZE) .

int bytes;

Number of bytes that can be read or written immediately without blocking.

These two calls, together with select , can be used for writing asynchronous or non-blocking
applications. It is important that SNDCTL_DSP_GETBLKSIZE be the last ioctl call made before

97

NOTE
This ioctl call must be used as early as possible. The optimum location is immediately after
opening the device. It is not possible to change fragmenting parameters a second time without
closing and reopening the device. Also note that calling read, write or the above three ioctl calls
lock the buffering parameters which may not be changed after that.

the first read or write. This call (as well as read or write) will perform some optimizations which
require that the sampling parameters to be used are known. Changing the rate, format, or numbers
of channels may cause an error condition with some hardware devices.

It is not recommended to use the SNDCTL_DSP_GETISPACE and SNDCTL_DSP_GETOSPACE
functions for obtaining exact synchronization between audio and graphics or other external events.
The values returned by these calls are tuned for preventing blocking anf they may in some situations
behave unexpectedly. The new SNDCLT_DSP_GETODELAY call should be used for
synchronization purposes instead.

Selecting Buffering Parameters (fragment size)

In some cases it may be desirable to select the fragment size explicitly. For example, in real time
applications such as games, it is necessary to use relatively short fragments. Otherwise, delays
between events on the screen and their associated sound effects become too long. The OSS API
contains an ioctl call for requesting a given fragment size and limiting maximum number of
fragments. However it should be pointed out that the default fragment size is suitable for most
applications.

int arg = 0xMMMMSSSS;
if (ioctl(audio_fd, SNDCTL_DSP_SETFRAGMENT, &arg))
 error();

This call doesn't set the actual fragemnt size. It just records the parameters to be used later when the
final sampling parameters are known. With some (older) devices the requested fragment size will
be used as is. With most devices the available fragment size is fixed or it depends on the sample size
being used. The result is that the fragment size actually being used may or may not be the one
requested by the application.

The argument to this call is an integer encoded as 0xMMMMSSSS (in hex). The 16 least significant
bits determine the fragment size. The size is 2^SSSS. For example SSSS=0008 gives fragment size
of 256 bytes (2^8). The minimum is 16 bytes (SSSS=4) and the maximum is total_buffer_size/2.
Some devices or processor architectures may require larger fragments - in this case the requested
fragment size is automatically increased.

Large number of audio devices (the professional ones in particular) use fixed fragment size and it's
possible that this ioctl call has no effect.

98

NOTE
Setting the fragment size and/or number of fragments too small may have unexpected results (at
least on slow machines). UNIX is a multitasking environment where other processes may use CPU
time unexpectedly. The application must ensure that the selected fragmenting parameters provide
enough slack so that other concurrently running processes don't cause underruns. Each underrun
causes a click or pause to the output signal. With relatively short fragments this may cause a
whining sound which is very difficult to identify. Using fragment sizes shorter than 256 bytes is not
recommended as the default mode of application. Short fragments should only be used when
explicitly requested by the user.

The 16 most significant bits (MMMM) determine the maximum number of fragments. By default,
the driver computes this based on available buffer space. The minimum value is 2 and the maximum
depends on the total buffer space available for the device. Set MMMM=0x7fff if you don't want to
limit the number of fragments.

The value returned in the argument by SNDCTL_DSP_SETFRAGMENT is just a meaningless
(random) value. It has nothing to do with the fragment size that will actually be used. Also there is
no guarantee that the requested value will be used even when the ioctl call doesn't return any errors.

The only way to find out the fragment size being used is calling any of the
SNDCTL_DSP_GETBLKSIZE, SNDCTL_DSP_GETISPACE or SNDCTL_DSP_GETOSPACE
ioctl calls. Any application using SNDCTL_DSP_SETFRAGMENT has responsibility to check
the actual fragment size being used using these calls.

Obtaining Buffering Information (pointers)

In some cases it is necessary for an application to know exactly how much data has been played or
recorded. The OSS API provides two ioctl calls for these purposes. The information returned by
these calls is not precise in all cases. Some sound devices use internal buffering which make the
returned pointer value very imprecise. In addition, some operating systems don't allow obtaining the
value of the actual DMA pointer. Using these calls in applications is likely to make it non-portable
between operating systems and makes them incompatible with many popular devices (such as the
original Gravis UltraSound). Applications should use ioctl(SNDCTL_DSP_GETCAPS) to check
device capabilities before using these calls.

count_info info;
ioctl(audio_fd, SNDCTL_DSP_GETIPTR, &info);
ioctl(audio_fd, SNDCTL_DSP_GETOPTR, &info);

These calls return information about recording and playback pointers, respectively. The count_info
structure contains the following fields:

int bytes;

99

Number of bytes processed since opening the device. This field divided by the number of
bytes/sample can be used as a precise timer. However underruns, overruns and calls to some ioctl
calls (SNDCTL_DSP_RESET, SNDCTL_DSP_POST and SNDCTL_DSP_SYNC) decrease
precision of the value. Also, some operating systems don't permit reading value of the actual DMA
pointer so in these cases the value is truncated to previous fragment boundary. The value returned
will wrap somehow unpredictably just before every hour or playback or recording has elapsed. For
this reason, these calls should not be used for audio and graphics synchronization purposes (unless
for less than one hour duration). Use the new SNDCTL_DSP_GETODELAY function instead. The
SNDCTL_DSP_GETERROR ioctl (described below) can be used to obtain the exact "wrap count"
substracted from this field.

int blocks;

Number of fragment transitions (hardware interrupts) processed since the previous call to this ioctl
(the value is reset to 0 after each call). This field is valid only when using direct access to audio
buffer.

int ptr;

This field is the byte offset of the current playback/recording position from the beginning of the
audio buffer. This field has little value except when using direct access to an audio buffer.

Checking for errors

OSS versions 3.9.4 and later have a new ioctl SNDCTL_DSP_GETERROR that can be used to
check for various error situations.

audio_errinfo errinfo;
ioctl(audio_fd, SNDCTL_DSP_GETERROR, &errinfo);

The audio_errinfo structure has the following fields:

int play_underruns;
int rec_overruns;

These fields give the number of playback underrun and recording overrun situations detected since
last call to SNDCTL_DSP_GETERROR (these counters will be reset to 0 after every call). If these
counters contain non zero value it means that the application is not reading and/or writing data fast
enough which causes clicks and pauses to the audio signal.

unsigned long play_ptradjust;
unsigned long rec_ptradjust;

The bytes field reported by the SNDCTL_DSP_GETOPTR and SNDCTL_DSP_GETIPTR calls will
"warp" at every hour to avoid uncontrolled overflows. These two fields tell the value that was

100

substracted from the bytes field(s). The value will be reset to 0 after being read. You can use this
information to reconstruct the "continuous" byte pointer value. However keep in mind that 32 bit
integers (even unsigned) can hold rather limited values.

int play_errorcount;
int rec_errorcount;
int play_lasterror;
int rec_lasterror;
long play_errorparm;
long rec_errorparm;

When read, write or ioctl calls return an error these fields may give some additional information.
This OSS specified information may make it easier to debug the problem. However please note that
this additional information is not always available in which case the application should display the
call that failed and the system error returned in errno(3) .

Note that these fields don't normally have any defined meaning. They are only defined immediately
after a read, write or ioctl call has failed on an audio device file. Checking these fields at any other
time will cause false alarms.

The play_errorcount field contains the number of OSS defined error "events" that were detected
during the call (write or some of the ioctl calls). The last event code that was encountered is then
given in the play_lasterror field. If play_errorcount is 0 it means just that OSS didn't have any
additional information (however it doesn't mean that there was no error).

The rec_errcount and rec_lasterror fields work in the same way. However they are only defined after
read or some of the ioctl calls returned error.

The values given in play_lasterror and rec_lasterror fields are reserved for OSS and the application
should not try to interpret them. Insteas these error codes should be reported so that debugging of
the problem becomes easier. A list of the error codes may get published later if it proves to be
usefull.
The play_errorparm and rec_errorparm fields give additional information that is related with the
play_lasterror and rec_lasterror fields (respectively). This information should be printed in case of
error.

Non-Blocking Reads and Writes

All audio read and write calls are non-blocking as long as there is enough space/data in the buffer
when the application makes the call. The application may use SNDCTL_DSP_GETOSPACE and
SNDCTL_DSP_GETISPACE to check the device's status before making the call. The bytes field
tells how many bytes can be read or written without blocking. It is highly recommended to read and
write full fragments every time when using select (actually it's recommended to always read all data
that is accumulated in the recording buffer).

101

Using select

The OSS driver supports standard select system call. With audio devices, select returns 1 in
the read or write descriptor bit mask when it is possible to read or write at least one byte without
blocking. The application should use SNDCTL_DSP_GETOSPACE and
SNDCTL_DSP_GETISPACE to check the actual situation. Reading and writing full fragments at
a time is recommended when select is used.

In some earlier OSS versions calling select() with the bit set in readfds started recording
automatically. This feature is not available any more. Use SNDCTL_DSP_SETTRIGGER to start
recording before calling select().

Some operating systems (such as Solaris) don't support select . In this case the poll system call
can be used instead.

Checking Device Capabilities

There are some features in the OSS API that don't work with all devices and/or operating systems.
For this reason it is important to check that the features are available before trying to use them. The
result of using features not supported by the current hardware/operating system combination is
undefined. However note that there are just very few cases when the device capabilities have any
meaning.

It is possible to check the availability of certain features by using the SNDCTL_DSP_GETCAPS
ioctl as below:

int caps;
ioctl(audio_fd, SNDCTL_DSP_GETCAPS, &caps);

This call returns a bit mask defining the available features. The possible bits are:

DSP_CAP_REVISION - the 8 least significant bits of the returned bit mask is the version number
of this call. In the current version it is 0. This field is reserved for future use.

DSP_CAP_DUPLEX - tells if the device has full duplex capability. If this bit is not set, the device
supports only half duplex (recording and playback is not possible at the same time).

DSP_CAP_REALTIME - tells if the device/operating system supports precise reporting of output
pointer position using SNDCTL_DSP_GETxPTR. Precise means that accuracy of the reported
playback pointer (time) is within a few samples. Without this capability the playback/recording
position is reported using precision of one fragment. Note that most devices don't have this
capability.

DSP_CAP_BATCH - indicates that the device has some kind of local storage for recording and/or

102

playback. For this reason the information reported by SNDCTL_DSP_GETxPTR is very inaccurate.

DSP_CAP_COPROC - means that there is some kind of programmable processor or DSP chip
associated with this device. This bit is currently undefined and reserved for prehistoric use.

DSP_CAP_TRIGGER - tells that triggering of recording/playback is possible with this device.

DSP_CAP_MMAP - tells if it is possible to get direct access to the hardware level recording and/or
playback buffer of the device.

Synchronization Issues

In some applications it is necessary to synchronize audio playback/recording with screen updates,
MIDI playback, or some other external events. This section describes some ways to implement this
kind of feature. When using the features described in this section it is very important to access the
device by writing and reading full fragments at time. Using partial fragments is possible but it may
introduce problems which are very difficult to handle.

There are several different reasons for using synchronization:

1. The application should be able to work without blocking in audio reads or writes.

2. There is a need to keep external events in sync with audio (or to keep audio in sync with
external events).

3. Audio playback and recording needs to be done in sync.

It is also possible to have several of the above goals at the same time.

Avoiding Blocking in Audio Operations

The recommended method for implementing non-blocking reads or writes is to use select
together with the SNDCTL_DSP_GETISPACE and SNDCTL_DSP_GETOSPACE
calls . Further instructions for using this method have been given above.

Synchronizing External Events With Audio

When there is a need to get audio recording and playback to work in sync with screen updates, it is
easier to play the audio at its own speed and to synchronize screen updates with it. To do this, you
can use the SNDCTL_DSP_GETxPTR calls to obtain the number of bytes that have been processed
since opening the device. Then divide the bytes field returned by the call by the number of bytes per
sample (for example 4 in 16-bit stereo mode). To get the number of milliseconds since start, you
need to multiply the sample count by 1000 and to divide this by the sampling rate.

103

In this way you can use normal UNIX alarm timers or select to control the interval between screen
updates while still being able to obtain exact audio time. Note that any kind of performance problems
(playback underruns and recording overruns) disturb audio timing and decrease it's precision.

Recent versions of OSS support the new SNDCTL_DSP_GETODELAY function. It accepts a
parameter that points to an integer variable. The call returns the number of unplayed bytes in the
kernel buffer (the precision varies between a few samples and one fragment depending on the
hardware capabilities). The return value can be used to compute the time before the next sample
written to the device will be played. The advantage of this call us that the value will not overflow
or wrap after a period of time, unlike the bytes parameter returned by the SNDCTL_DSP_GETOPTR
call.

This synchronization strategy is probably only useful when doing playback. When recording , use
approach described in the next section.

Synchronizing Audio With External Events

In games and some other real time applications there is a need to keep sound effects playing at the
same time as the associated game events. For example, the sound of an explosion should be played
exactly at the time (or slightly later) as the flash on the screen.

The recommended method to be used in this case is to decrease the fragment size and maximum
number of fragments used with the device. In most cases this kind of application work best with just
2 or 3 fragments. A suitable fragment size can be determined by dividing the byte rate of audio
playback by the number of frames/second to be displayed by the game. It is recommended to avoid
too tight timing since otherwise random performance problems may seriously degrade audio output.
However note that many devices don't permit changing the fragment size at all.

Another way to synchronize audio playback with other events is to use direct access to audio device
buffer. However, this method is not recommended since it is not possible on many common devices
and operating systems.

When using the methods described above, there may be a need to start playback and/or recording
precisely at the right time. This is possible by using the trigger feature described below.

Synchronizing Recording and Playback Together

In full duplex applications it may be necessary to keep audio playback and recording synchronized
together. For example, it may be necessary to play back earlier recorded material at the same time
as recording new audio tracks. Note that this kind of application is possible only with devices
supporting full duplex operation or by using two separate audio devices together. In the second case
it is important that both devices support precisely the sampling rate to be used (otherwise
synchronization is not possible). Use the trigger feature when you need this kind of synchronization.

104

Implementing Real-Time Effect Processors and other Oddities

Here the term "real-time" means an application which records audio data, performs some kind of
processing on it, and outputs it immediately without any noticeable delay. Unfortunately, this kind
of applications in general is not possible using UNIX-like multitasking operating systems and
general purpose computer hardware. There is always some delay between recording a sample and
before it is available for processing by the application (the same is true with playback too). In
addition, the multitasking overhead (other simultaneously running processes) causes unexpected
pauses in operation of the application itself. Normally these kinds of operations are done with
dedicated hardware and system software designed for this kind of use.

It is possible to decrease the delay between input and output by decreasing the fragment size. In
theory, the fragment size can be as short as 16 bytes with a fast machine. However, in practice it is
difficult to get fragment sizes shorter than 128 to 256 bytes to work. Using direct access to the
hardware level audio buffer may provide better results in systems where this feature works.

If you still want to implement this kind of application, you should use short fragments together with
select. The shortest fragment size that works depends on the situation and the only way to find it out
is making some experiments. And, of course, you should use a device with full duplex capability or
two separate devices together.

Usually read/write type real-time full duplex applications require that one fragment of silence data
is written to the output device immediately prior to writing the first recorded data to it. This extra
data causes some unwanted delay but without it the application (and operating system) has
practically no time to do it's own processing. It's important that this silent data is written after the
first read is complete, because otherwise playback may start too early.

It should be noted that in general it's not possible to use two or more sound cards in perfect
synchronization. Two devices that are not explicitly synchronized together will never work exactly
at the same sampling rate. For this reason, there will be some drift between the two sound cards.
Eventually, after enough time has elapsed, this will cause problems (the time could be from seconds
to hours).

For the above reason, effect processing and multi-track recording may work only when using a
single full duplex capable soundcard or a proper multi channel device. There are also devices that
may be synchronized together using a special cable which solves this problem.

A similar problem may happen when working with ISDN connections. The ISDN data rate is exactly
8K bytes/sec but not all sound cards are able to work at exactly the 8 kHz rate.

Starting Audio Playback and/or Recording with Precise Timing

The SNDCTL_DSP_SETTRIGGER ioctl call has been designed to be used in applications which
require starting recording and/or playback with precise timing. Before you use this ioctl , you

105

should check that the DSP_CAP_TRIGGER feature is supported by the device. Trying to use this
ioctl with a device not supporting it will give undefined results.

This ioctl accepts an integer parameter where two bits are used to enable and disable playback,
recording or both. The PCM_ENABLE_INPUT it controls recording and PCM_ENABLE_OUTPUT
controls playback. These its can be used together, provided that the device supports full duplex and
the device has been opened for O_RDWR access. In other cases the application should use only one
of these bits without reopening the device.

The driver maintains these bits for each audio device which supports his feature. Initially, after open,
these bits are set to 1 which makes the device work normally.

Before the application can use the trigger ioctl to start device operations, the bit to be used should
be set to 0. To do this you can use the following code. It is important to note that this can be done
only immediately after opening the device (before writing to or reading from it). It is currently not
possible to stop or restart a device that has already been active without first reopening the device file.

int enable_bits = ~PCM_ENABLE_OUTPUT; /* This disables playback */
ioctl(audiofd, SNDCTL_DSP_SETTRIGGER, &enable_bits);

After the above call writes to the device, don't start the actual device operation. The application can
fill the audio buffer by outputting data using write . Write will return -1 with errno set to
EAGAIN if the application tries to write when the buffer is full. This permits preloading the buffer
with output data in advance. Calling read when PCM_ENABLE_INPUT is not set will always return
EAGAIN.

To actually activate the operation, call SNDCTL_DSP_TRIGGER with the appropriate bits set. This
will start the enabled operations immediately (provided that there is already data in the output
buffer). It is also possible to leave one of the directions disabled while starting another one.

Starting Audio Recording or Playback in Sync with /dev/sequencer or
/dev/music

In some cases it is necessary to synchronize playback of audio sequences with MIDI output (this is
possible with recording too). To do this you need to suspend the device before writing to or reading
from it. This can be done by calling ioctl(audiofd, SNDCTL_DSP_SETSYNCRO, 0) . After
this, the device works just like when both the recording and the playback trigger bits (see above)
have been set to 0. The difference is that it is not possible to reactivate the device without using
features of /dev/sequencer or /dev/music (SEQ_PLAYAUDIO event).

Full Duplex Mode

Full duplex means an audio device has the ability to do input and output in parallel.

106

Most audio devices are half duplex, which means that they support both recording and playback but
can’t do them simultaneously due to hardware level limitations (some devices can't do recording at
all). In this case it is very difficult to implement applications which do both recording and playback.
It is recommended that the device is reopened when switching between recording and playback.

It is possible to get full duplex features by using two separate devices. In the context of OSS this is
not called full duplex but simultaneous use of two devices.

Full duplex does not mean that the same device can be used twice. With the current OSS
implementation it is not possible to open a device that is already open. This feature can possibly be
implemented in future versions. In this situation you will need to use two separate devices.

Some applications require full duplex operation. It is important that such applications verify that full
duplex is possible (using DSP_CAP_DUPLEX) before trying to use the device. Otherwise, the
behaviour of the application will be unpredictable.

Applications should switch the full duplex feature on immediately after opening the device using
ioctl(audiofd, SNDCTL_DSP_SETDUPLEX, 0) . This call switches the device to full
duplex mode and makes the driver prepared for full duplex access. This must be done before
checking the DSP_CAP_DUPLEX bit, since otherwise the driver may report that the device doesn't
support full duplex.

Using full duplex is simple in theory. The application just:

1. Opens the device
2. Turns on full duplex
3. Sets the fragment size if necessary
4. Sets the number of channels, sample format, and sampling rate
5. Starts reading and writing the device

In practice, it is not that simple. The application should be able to handle both input and output
correctly without blocking on writes and reads. This almost certainly means that the application must
be implemented to use the synchronization methods described earlier.

Syncronizing two separate audio devices together

You may think that it's possible to implement a multi track recording system by using two (or more)
cheap soundcards. Forget that and buy a true multi track soundcard. This idea just doesn't work.

The problem is that all cards will have slightly different sampling rate. All cards compute the
sampling rate based on their internal crystal oscillator. Even if you have two exactly similar
soundcards (having subsequent serial numbers) there is a minor difference (error) in their crystals.
This means that after given time they will get several thousands of samples out of sync.

107

The same thing will happen if you try to play 8 kHz audio data received from an ISDN line using
a soundcard set to use 8 kHz sampling rate. This may work but your application needs to be able to
convert between the two (slightly different) 8 kHz clocks on the fly (the problem is how to measure
the sampling rate difference quickly and reliably)..

Accessing the DMA Buffer Directly

In some rare cases it is possible to map audio device's hardware level buffer area into the address
space of an application. This method is very operating system dependent and is currently only
supported on the Linux platform. In general, this feature should be avoided if possible because it's
always possible to do the same thing using normal read/write. It doesn’t work with many common
audio devices. Contact 4Front Technologies for assistance if there is no other way to implement
your application.

The direct mapping method is possible only with devices that have a hardware level buffer which
is directly accessible from the host CPU's address space (for example, a DMA buffer or a shared
memory area).

The basic idea is simple. The application uses an operating system dependent method to map the
input or the output buffer into it's own virtual address space. In the case of full duplex devices, there
are two separate buffers (one for input and one for output). After that, it triggers the desired transfer
operation(s). Then, the buffer will be continuously accessed by the hardware until the device is
closed. The application can access the buffer area(s) using pointers, but normal read and write calls
can no longer be used.

The buffer area is continuously scanned by the hardware. When the pointer reaches the end of the
buffer, the pointer is moved back to the beginning. The application can read and write the data using
the SNDCTL_DSP_GETxPTR calls. The bytes field tells how many bytes the device has processed
since beginning. The ptr field gives an offset relative to the beginning of the buffer. This pointer
must be aligned to the nearest sample boundary before accessing the buffer using it. The pointer
returned by this call is not absolutely precise due to possible delays in executing the ioctl call and
possible FIFOs inside the hardware device itself. For this reason, the application should assume that
the actual pointer is a few samples ahead of the returned value.

When using direct access, the blocks field returned by the SNDCTL_DSP_GETxPTR calls has
special meaning. The value returned in this field is the number of fragments that have been processed
since the previous call to the same ioctl (the counter is cleared after the call).

Also, select works in a special way with mapped access. Select returns a bit in the readfds or writefds
parameter after each interrupt generated by the device. This happens when the pointer moves from
a buffer fragment to another. However, the application should check the actual pointer very carefully.
It is possible that the select call returns a relatively long time after the interrupt. It is even possible
that another interrupt occurs before the application gets control again.

108

Note that the playback buffer is never cleaned by the driver. If the application stops updating the
buffer, its present contents will be played in a loop again and again. Sufficient play-ahead is
recommended, since otherwise the device may play uninitialized (old) samples if there are any
performance problems.

No software based sample format conversions are performed by the driver. For this reason the
application must use a sample format that is directly supported by the driver. Equally well any
software sample rate conversions cannot be used together with mmap() so with some devices
mmapped applications may use only one fixed sampling rate (usually 48kHz).

109

Platform Specific Issues

In general, all sound/audio programs written for Linux, FreeBSD, SCO or UnixWare use the same
OSS API (or its older version called VoxWare). The sound related functionality of these programs
is portable between operating systems where OSS is available. However, there are some common
portability problems.

Programs that use OS specific libraries or features are not portable or they require some changes
before they work.

Some programs include <soundcard.h > in a nonstandard way such as
<linux/soundcard.h > or <machine/soundcard.h >. You should instead use
<sys/soundcard.h >.

Many 16-bit audio programs assume that they are running on a little-endian (x86) machine. This
causes problems (e.g. noise) in big-endian RISC machines such as PowerPC, SPARC or HP-PA.

110

Appendix A - References

The full MIDI definition is found in The Complete MIDI 1.0 Detailed Specification, published by
the MIDI Manufacturers Association. More information can be found at http://www.midi.org .

Information on installing and configuring OSS can be found in the Open Sound System Installation
Guide.

Listed here are just a few web resources related to sound and multimedia:

http://www.opensound.com

The 4Front Technologies web site has a list of multimedia applications that support OSS, as well as
a "killer app" featured each month.

http://www.linuxdoc.org

The Linux Documentation Project has created many HOWTO documents for Linux, including the
CD-ROM and Sound HOWTOs. It also includes several freely available books. Many of these are
installed on Linux systems in the /usr/doc directory.

http://sound.condorow.net

This web site has a comprehensive and up to date list of Linux and UNIX MIDI and sound
applications.

http://www.freshmeat.net

This site is a central clearing house for Linux applications, both a large searchable database, as well
as announcements of new releases.

Several published books have some coverage of sound support, most notably Linux Multimedia
Guide published by O'Reilly & Associates. Usenet newsgroups, mailing lists, and local user groups
are also a good source of answers to problems related to sound support.

111

Appendix B - General MIDI patch map

Note that, as per the MIDI spec, program numbers listed here start at one but are zero based in MIDI
messages. Some MIDI applications may display the zero-based numbers.

Table 12 - General MIDI Sound Set (all channels except 10)

Instrument # Instrument # Instrument

1 Acoustic Grand Piano 44 Contrabass 87 Lead 7 - Fifths

2 Bright Acoustic Piano 45 Tremolo Strings 88 Lead 8 - Bass+Lead

3 Electric Grand Piano 46 Pizzicato Strings 89 Pad 1 - New Age

4 Honky-Tonk 47 Orchestral Harp 90 Pad 2 - Warm

5 Rhodes Piano 48 Timpani 91 Pad 3 - Polysynth

6 Chorused Piano 49 String Ensemble 1 92 Pad 4 - Choir

7 Harpsicord 50 String Ensemble 2 93 Pad 5 - Bow

8 Clavinet 51 Synth Strings 1 94 Pad 6 - Metallic

9 Celesta 52 Synth Strings 2 95 Pad 7 - Halo

10 Glockenspiel 53 Choir Aahs 96 Pad 8 - Sweep

11 Music Box 54 Voice Oohs 97 FX 1 - Rain

12 Vibraphone 55 Synth Voice 98 FX 2 - Soundtrack

13 Marimba 56 Orchestra Hit 99 FX 3 - Crystal

14 Xylophone 57 Trumpet 100 FX 4 - Atmosphere

15 Tubular Bells 58 Trombone 101 FX 5 - Brightness

16 Dulcimer 59 Tuba 102 FX 6 - Goblins

17 Hammond Organ 60 Muted Trumpet 103 FX 7 - Echoes

18 Percussive Organ 61 French Horn 104 FX 8 - Sci-fi

19 Rock Organ 62 Brass Section 105 Sitar

20 Church Organ 63 Synth Brass 1 106 Banjo

21 Reed Organ 64 Synth Brass 2 107 Shamisen

22 Accordion 65 Soprano Sax 108 Koto

112

23 Harmonica 66 Alto Sax 109 Kalimba

24 Tango Accordion 67 Tenor Sax 110 Bagpipe

25 Acoustic Guitar (Nylon) 68 Baritone Sax 111 Fiddle

26 Acoustic Guitar (Steel) 69 Oboe 112 Shannai

27 Electric Guitar (Jazz) 70 English Horn 113 Tinkle Bell

28 Electric Guitar (Clean) 71 Bassoon 114 Agogo

29 Electric Guitar (Muted) 72 Clarinet 115 Steel Drum

30 Overdriven Guitar 73 Piccolo 116 Wook Block

31 Distortion Guitar 74 Flute 117 Taiko Drum

32 Guitar Harmonics 75 Recorder 118 Melodic Tom

33 Acoustic Bass 76 Pan Flute 119 Synth Drum

34 Electric Bass (Finger) 77 Blown Bottle 120 Reverse Cymbal

35 Electric Bass (Pick) 78 Shakuhachi 121 Guitar Fret Noise

36 Fretless Bass 79 Whistle 122 Breath Noise

37 Slap Bass 1 80 Ocarina 123 Seashore

38 Slap Bass 2 81 Lead 1 - Square Wave 124 Bird Tweet

39 Synth Bass 1 82 Lead 2 - Saw Tooth 125 Telephone

40 Synth Bass 2 83 Lead 3 - Calliope 126 Helicopter

41 Violin 84 Lead 4 - Chiflead 127 Applause

42 Viola 85 Lead 5 - Charang 128 Gunshot

43 Cello 86 Lead 6 - Voice

Table 13 - General MIDI Percussion Map (Channel 10)

Instrument # Instrument # Instrument

35 Acoustic Bass Drum 51 Ride Cymbal 1 67 High Agogo

36 Bass Drum 1 52 Chinese Cymbal 68 Agogo Low

37 Side Stick 53 Ride Bell 69 Cabasa

38 Acoustic Snare 54 Tambourine 70 Maracas

113

39 Hand Clap 55 Splash Cymbal 71 Short Whistle

40 Electric Snare 56 Cowbell 72 Long Whistle

41 Low Floor Tom 57 Crash Cymbal 2 73 Short Guiro

42 Closed Hi Hat 58 Vibraslap 74 Long Guiro

43 High Floor Tom 59 Ride Cymbal 2 75 Claves

44 Pedal Hi Hat 60 Hi Bongo 76 Hi Wood Block

45 Low Tom 61 Low Bongo 77 Low Wood Block

46 Open HiHat 62 Mute Hi Conga 78 Mute Cuica

47 Low-Mid Tom 63 Open High Conga 79 Open Cuica

48 Hi-Mid Tom 64 Low Conga 80 Mute Triangle

49 Crash Cymbal 1 65 High Timbale 81 Open Triangle

50 High Tom 66 Low Timbale

114

void seqbuf_dump ()
{
 if (_seqbufptr)
 if (write (seqfd, _seqbuf, _seqbufptr) == -1) {
 perror ("write /dev/sequencer");
 exit (-1);
 }
 _seqbufptr = 0;
}

Appendix C - FM Synthesizer Interface

This section describes the /dev/sequencer interface. This interface is now obsolete and has been
replaced by the /dev/music device.

The /dev/sequencer device is used for producing musical type sounds. It can be used to control
an FM sound chip (OPL-3 or OPL-4), a wavetable sound card (e.g. GUS), MIDI devices, and other
compatible devices (like the SoftOSS software wavetable device). While you can do similar things
with the /dev/music and /dev/midi devices, this one gives you the most control for on-board
sound devices.

It is used in a manner vaguely similar to MIDI, you send events to the driver, the events are put in
a queue and executed in the background. If you fill the queue, your process will block until the queue
is not full. The low "water mark" queue threshold is configurable (the default is half the queue) and
settable via the SNDCTL_SEQ_THRESHOLD ioctl .

You can avoid blocking by opening in non blocking mode, in which case it will fail with return code
EAGAIN. If the queue empties, playing stops until more events sent. The queue is quite large (1024
events).

There is a low-level interface, but you will normally make use of the macros defined in
<soundcard.h> to make programming more convenient (and less likely to break in future). Note
that the interface does not run on real-time! You put timing information in the messages and the
sounds are played in the background.

The normal way in which the interface is used is the following:

1. Set buffer size with SEQ_DEFINEBUF()
2. Define file descriptor, seqfd
3. Implement buffer writing routine called seqbuf_dump (the example code shown below

should work fine, possibly with different error handling)

Listing 13 - Sample Implementation of Buffer Writing Routine

4. Open the device (in most cases for write only)
5. Load instrument patches (if internal sound card)
6. Set patches for each voice

115

7. Start timer (starts when device opened)
8. Play notes with SEQ_START_NOTE
9. Timing info with SEQ_DELTA_TIME or SEQ_WAIT_TIME
10. Stop notes with SEQ_STOP_NOTE
11. Use other events for various effects
12. When done call SEQ_DUMPBUF() to flush the buffer

The event commands defined in the header file start with "SEQ_". The sequencer specific ioctl
functions start with the prefix "SNDCTL_SEQ_".

Patches for the sound devices vary by the type of device. Defined types are FM_PATCH,
OPL3_PATCH, WAVE_PATCH, GUS_PATCH, and WAVEFRONT_PATCH. The are often
obtained from patch files. The files /etc/std.o3 and /etc/drums.o3 are FM patch files for
General MIDI. The files /etc/std.sb and /etc/drums.sb are SBI file format patches. You
may also have .sbi patch files for individual voices. Files with extension .pat are patch files for GUS
cards. Patches are written to the device using the macros SEQ_WR_PATCH for SEQ_WRPATCH2.

Don't assume a clock rate, you can check it with SNDCTL_SEQ_RATE (it usually 100 ticks per
second).

Each voice can only play one sound at a time. If told to play a note any previous one stops.
Application needs to handle switching voices if you want polyphony. Like MIDI, channel 10 (9
zero-based) is the percussion channel.

You can get the current time using SNDCTL_SEQ_GETTIME ioctl . Given this you can
synchronize other things with the playing of the music. It is also possible receive events using
SEQ_ECHO_BACK which will be synchronized with the playing.

Note that you can play /dev/sequencer independently of /dev/dsp . Some programs, e.g.
games, use /dev/dsp for sound effects and /dev/sequencer for music

For an example of using the devices, read the source code for applications such as playmidi .

116

Glossary of Terms

A-law - a logarithmic coding scheme that uses companding to compress 12 bit samples into 8 bits.
Used primarily in European digital telephone systems.

ADC - analog to digital converter. A device that converts continuously variable analog values (such
as sound pressure measured by a microphone) to discrete digital samples.

ADPCM - Adaptive Delta Pulse Code Modulation. A digital encoding scheme developed by the
Interactive Multimedia Association.

API - Application Programming Interface. The set of functions, constants, and variables provided
by a software application, library, or device driver.

Bitmask - a bit pattern used to isolate specific bits in a data representation. Often used in conjunction
with binary boolean operation such as AND and OR.

Codec - encoder/decoder; a method of coding and decoding data from one format to another. May
be implemented in hardware or software.

DAC - digital to analog converter. A device that converts discrete digital samples to continuously
variable analog values (such as sound produced by a speaker).

DAT - Digital Audio Tape. A standard for storing digital information on magnetic tape.

DMA - Direct Memory Access. A hardware feature whereby data can be transferred directly between
peripheral devices and main memory without the intervention of the CPU.

DSP - Digital Signal Processor. Strictly speaking refers to a processor chip designed for signal
processing applications, but often used informally to refer to the ADC and DAC devices on a sound
card.

Decibel (dB) - a unit of measurement based on a logarithmic scale. Often used for measuring sound
intensity, since the human ear has a logarithmic response.

Digitize - to convert from analog to digital form.

Dynamic Range - the difference between the weakest and loudest values that can be represented.
For a perfect analog to digital converter, the dynamic range is approximately 6 dB times the numbers
of bits used for sampling.

Endian - The endian convention of a processor refers to the way in which multi-byte numbers are
stored in memory. Little-endian systems store the least significant bytes at lower memory address

117

which big-endian systems use the opposite convention.

FM Synthesis - Frequency Modulation synthesis; a method of sound generation that uses waveform
generators and modulators in combination to produce sound.

Full Duplex - in the context of a sound card, refers to the ability to both record and play back
simultaneously.

GM - see General MIDI

GUS - Gravis UltraSound; a manufacturer of sound cards.

General MIDI - an extension to the MIDI standard which improves compatibility by defining a
minimum set of capabilities and standardized sound sets.

Half Duplex - in the context of a sound card, refers to the limitation that a device can either record
or play back, but not both simultaneously.

IMA - Interactive Multimedia Association. A body which defines standards, such as the ADPCM
encoding format.

ISDN - Integrated Services Digital Network. A series of ISO standards for voice and data services
over digital telecommunications networks.

Ioctl - a system call used to control devices.

Line In/Line Out - a standardized physical and electrical interface for connecting analog audio
devices together. Line level differs from microphone level and speaker level.

MIDI - Musical Instrument Digital Interface. A standardized protocol for conveying musical
performance information as electronic data.

MMA - MIDI Manufacturers Association. A body which publishes the MIDI standard and promotes
the use of MIDI and related technologies.

MOD - MODule file; a music file format that includes both sequencing information as well as sound
samples. First popularized on the Amiga computer platform.

MPEG - Moving Pictures Experts Group, a body which sets standards for digital audio and video
encoding. Also used informally to refer to the standards produced by the group.

MPU-401 - A de facto standard for a PC MIDI interface developed by Roland Corporation.

MSS - Microsoft Sound System; a (now obsolete) sound card.

118

Mic - microphone

Mixer - a device used to control sound input and output volume levels and switching of the input
sources.

Mu-law - (µ-law); a logarithmic coding scheme that uses companding to compress 12 bit samples
into 8 bits. Used primarily in North American digital telephone systems.

OPL-2 - An FM synthesizer chip developed by Yamaha. It provided 2 operators and 9 voices.

OPL-3 - An FM synthesizer chip developed by Yamaha. It offered improved sound quality of the
OPL-2 chip by providing 4 operators and more voices.

OSS - Open Sound System, the multi-platform sound drivers sold by 4Front Technologies.

Operator - a waveform oscillator on an FM synthesizer chip used to produce sound. More operators
allow more realistic sounds to be produced.

Overrun - an error condition in which incoming data cannot be read quickly enough, resulting in
data loss.

PAS - ProAudio Spectrum, a manufacturer of sound cards.

Patch - In the context of sound generation, the device settings for a sound generator which produce
a specific sound (i.e. acoustic piano). The settings are often permanently stored in files, known as
patch files.

PCM - Pulse Code Modulation. An encoding scheme for representing audio
in digital format.

SB - SoundBlaster. A series of sound cards developed by Creative Labs.

SBI - SoundBlaster Instrument. A file format developed by Creative Labs to define FM synthesizer
settings (patches).

SMPTE - Society of Motion Picture Technicians and Engineers. A standards organization. Often
used informally to refer to the time code standard developed by the SMPTE.

Sample Rate - that rate at which digital samples are measured or produced. Along with sample size,
is one of the fundamental parameters which affects sound quality.

Sample Size - the size, usually expressed in bits, of digitized sound samples. Along with sample rate,
is one of the fundamental parameters which affects sound quality.

119

Sequencer - a device (hardware or software) which controls (sequences) the playing of notes on a
music synthesizer.

SoftOSS - an optional feature of OSS which implements wavetable synthesis on non-wavetable
sound cards.

SysEx - System Exclusive Message. A class of MIDI system messages which are used to transfer
information in a manufacturer dependent format.

Underrun - an error condition in which outgoing data is not available to be sent when required,
usually resulting in data loss or noise.

Virtual Mixer - an optional feature of OSS which provides multiple virtual sound devices using only
one physical device.

Voice - an independent sound generator.

Wavetable Synthesis - a method of sound generation that uses digital sound samples stored in
dedicated memory.

120

Index
. 19
/dev/audio. 26
/dev/dsp . 26
/dev/dspW . 26
3D . 93
Advanced Programming. 94
applications . 111
books . 111
buffer size . 29
buffering. 100
capabilities. 22
CD-ROM . 10
codec . 9, 25
compatibility problems. 10
compile errors . 10
compression. 25
Creative Music Format. 44
default value. 15
default values. 27
delays. 42
device capabilities. 103
device names. 14
devices. 10
digital audio . 25
Digital Signal Processor. 25
direct mapping. 109
DMA . 94
DMA buffer . 109
double buffering. 94
DSP . 9, 10, 25
dumb mode . 43
endian convention. .15, 27
error code. 27
error codes. 28
FM chip . 44
FM modulation . 45
FM synthesizer. 52
fork . 15
fragment size. 97
full duplex .26, 107
Glossary. 117
guidelines. 14

121

GUS . 91
half duplex .26, 107
header file .10, 28
HOWTOs . 111
HZ . 15
Installation Guide. 9
installing. 111
intelligent mode. 43
joystick . 10
labelling . 22
latency . 95
limitations . 91
Linux . 9
Linux Multimedia Guide. 111
macros . 14
main volume . 16
major device number. 13
microphone input. 18
MIDI .10, 41, 61
MIDI channel voice messages. 61
MIDI definition . 111
MIDI files . 65
MIDI patch map. 112
MIDI protocol . 42
MIDI synthesizer. 64
MIX option . 87
mixer . 9, 18
mixer channels. 18
mnemonic names. 19
mono .22, 34
MPU-401 . 43
mu-law . 37
non-blocking .102, 104
note frequencies. 64
note pitch numbers. 64
numbering of devices. 12
Nyquist's Sampling Theorem. 25
overrun. 97
parsing MIDI files . 66
PCM . 9
playback. 30
portability .14, 110
query functions . 21
raw music interface. 44

122

real-time. 97
recording .26, 30
recording sources. .18, 23
sample applications. 44
sample formats. 31
sample size. 25
sampling rate. 25
SBI . 54
select . 102
sequencer. 42
SoftOSS. .87, 89
Sound Blaster Instrument. 54
sound quality. 25
SoundBlaster Pro. 24
stereo .22, 34
symbolic link . 15
symbolic links .26, 29
synchronization. 104
synthesizer. 42
timeout . 43
timer . 15
timer rate . 17
tricks . 26
undocumented features. 16
UNIX . 9
unnecessary features. 16
unsupported formats. 32
virtual audio device. 88
virtual mixer. 87
virtual wave table engine. 89
volume levels. 22

