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Abstract
Some type class instances can be automatically derived from the
structure of types. As a result, the Haskell language includes the
“deriving” mechanism to automatic generates such instances for
a small number of built-in type classes. In this paper, we present
RepLib, a GHC library that enables a similar mechanism for ar-
bitrary type classes. Users of RepLib can define the relationship
between the structure of a datatype and the associated instance dec-
laration by a normal Haskell functions that pattern-matches a repre-
sentation type. Furthermore, operations defined in this manner are
extensible—instances for specific types not defined by type struc-
ture may also be incorporated. Finally, this library also supports the
definition of operations defined by parameterized types.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Design, Languages

Keywords Type-indexed programming, Datatype-generic pro-
gramming, Representation types, GADT

1. Deriving type-indexed operations
Type-indexed functions are those whose behavior is determined by
the types of their arguments. In Haskell, type classes [32, 8] enable
the definition and use of such functions. For example, the Eq type
class defines the signature of polymorphic equality.

class Eq a where (≡) :: a → a → Bool

The instances of the Eq class define the behavior of polymorphic
equality at specific types. For example, an instance for a datatype
Tree is below.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Eq a ⇒ Eq (Tree a) where
(Leaf x1 ) ≡ (Leaf x2 ) = x1 ≡ x2
(Branch t1 t2 ) ≡ (Branch s1 s2 ) = t1 ≡ s1 ∧ t2 ≡ s2

≡ = False

In general, when a programmer defines a new type T in Haskell,
she may enable polymorphic equality for that type by providing an
instance of Eq T .

However, Haskell programs often include many datatype defi-
nitions and it can be tiresome to define instances of Eq for all of
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these types. Furthermore, there is often a relationship between the
structure of a datatype definition and its instance for Eq , so many
of these instances have similar definitions. As a result, the Haskell
language includes the deriving mechanism that can be used to di-
rect a Haskell compiler to insert an instance of the Eq based on the
structure of a newly defined datatype. For example, the code above
may be replaced by the following.

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq)

Deriving is a useful addition to the Haskell language in that it
cuts down on the boilerplate instance declarations that program-
mers must write when they declare new datatypes. Importantly, it
is an optional mechanism, providing a default instance for Eq when
directed, but allowing programmers to write their own specialized
instances for Eq when necessary.

Unfortunately, deriving only works for a handful of built-in type
classes. In Haskell 98, only Eq , Ord , Bounded , Show and Read
are derivable. User-defined type classes cannot take advantage of
deriving. To address this limitation, there have been a number of
proposals for experimental libraries and extensions to Haskell, such
as Polytypic Programming (PolyP) [18], Generic Haskell [3, 24],
Derivable type classes [11], the Typeable type class (with the
“Scrap your Boilerplate Library” [21, 22, 23]), preprocessors such
as DrIFT [6] and Template Haskell [30], and various encodings of
representation types [39, 5, 13]. These proposals each have their
benefits, but none has emerged as a clearly better solution.

In this paper, we present the RepLib library for the Glasgow
Haskell Compiler (GHC) [7] that enables a deriving-like behavior
for arbitrary type classes. It works by using Template Haskell to de-
fine representation types that programmers may use to specify the
default behavior of type-indexed operations. Representation types
reflect the structure of types as Haskell data, therefore programmers
can define type-indexed operations as ordinary Haskell functions.

The idea of programming with representation types is itself not
new. The contribution of this paper is instead four ideas that make it
work in this particular situation. Individually, these ideas may seem
small, but each is essential to the design. In short, the four ideas of
this paper are:

• To make type classes “derivable” by using representation types
to define default methods for them (Section 2).

• To generically represent the structure of datatypes with a list of
data constructor embeddings (Section 3).

• To support specializable type-indexed operations by parameter-
izing the representation of datatypes with explicit dictionaries
(Section 4).

• To support the definition of functions indexed by parameter-
ized types by dynamically supplying explicit dictionaries (Sec-
tion 5).



In Section 7, we compare the capabilities of this proposal to
existing work. For example, there are a number of ways to generi-
cally represent the structure of datatypes, and, more broadly, there
are a number of ways to define type-indexed operations that do not
rely on representation types. However, our view is that the suc-
cess of any proposal relies on ease of adoption. Therefore, we have
worked hard to identify a small set of mechanisms, implementable
within the language of an existing Haskell compiler, that are, in our
subjective view, useful for common situations and provide a pro-
gramming model familiar to functional programmers.

An initial release of RepLib is available for download1 and is
compilable with the Glasgow Haskell Compiler (GHC), version
6.4. This library is not portable. It requires many of the advanced
features of GHC that are not found in Haskell 98: Higher-rank poly-
morphism [29], lexically-scoped type variables [31], Generalized
Algebraic Datatypes (GADTs) [28], and undecidable instance dec-
larations. Furthermore, Template Haskell [30] automates the defi-
nition of representations for new datatypes. However, all of these
extensions are useful in their own respect.

2. Representation Types and Type Classes
We begin by showing how a simple representation type can be used
to define a default method for a particular type class. The purpose
of this Section is only to introduce representation types and clarify
the roles that they and type classes play. The code developed here
is for illustrative purposes and not part of the RepLib library.

Representation types [4] allow programmers to define type-
indexed operations as they would many other functions in Haskell—
by pattern matching an algebraic datatype. However, a representa-
tion type is no ordinary datatype: It is an example of a Generalized
Algebraic Datatype (GADT), a recent addition to GHC [28].

For example, we define the representation type R below, fol-
lowing GADT notation, by listing all of its data constructors with
their types.

data R a where
Int :: R Int
Unit :: R ()
Bool :: R Bool
Char :: R Char
Pair :: R a → R b → R (a, b)
Arrow :: R a → R b → R (a → b)
List :: R a → R [a ]

The important feature of the R type is that, even though it is a
parameterized datatype, the data constructor determines the type
parameter. For example, the data constructor Int requires that the
type parameter be Int . This reasoning works in reverse, too. If we
know that the type of a term is R Int , then we know that the term
must either be the data constructor Int or ⊥.

GHC performs this sort of reasoning when type checking type-
indexed functions. For example, we might write an operation that
adds together all of the Ints that appear in a data structure. (In this
paper, all functions whose first argument is a representation type
end with a capital “R”.)

gsumR :: R a → a → Int
gsumR Int x = x
gsumR (Pair t1 t2 ) (x1 , x2 ) =

gsumR t1 x1 + gsumR t2 x2
gsumR (List t) l =

foldl (λs x → (gsumR t x ) + s) 0 l
gsumR (Arrow t1 t2 ) f = error "urk!"

gsumR x = 0

1 http://www.cis.upenn.edu/∼sweirich/RepLib

Operationally, this function is the identity function for integers.
For compound data structures, such as lists and products, it decom-
poses its argument and calls itself recursively. Because we cannot
access the integers that appear in a closure, it is an error to apply
this function to data structures that contains functions. For all other
types of arguments, this function returns 0.

This definition type checks in the Int branch because we know
that in that branch the type a must be Int . So, even though the type
signature says the branch should return an Int , it is acceptable to
return the argument x of type a . In GADT terminology, the type a
has been refined to Int . Furthermore, in the Pair branch, we know
that the type a must be a tuple, so we may immediately destruct the
argument. Likewise, in the List branch, l must be a list and so is
an appropriate argument for foldl .

The gsizeR function may be applied to any argument composed
of Ints, unit, booleans, characters, pairs and lists, when provided
with the appropriate type representation for that argument. For
example,

gsumR (Bool ‘Pair ‘ (List Int)) (True, [3, 4]) ≡ 7

Now compare the definition of gsumR with a type-class based
implementation. We could rewrite the generic sum function using
type classes as:

class GSum a where
gsum :: a → Int

instance GSum Int where
gsum x = x

instance GSum () where
gsum x = 0

instance GSum Bool where
gsum x = 0

instance GSum Char where
gsum x = 0

instance (GSum a,GSum b) ⇒ GSum (a, b) where
gsum (x1 , x2 ) = gsum x1 + gsum x2

instance (GSum a) ⇒ GSum [a ] where
gsum l = foldl (λs x → (gsum x ) + s) 0 l

With this definition, only a little type information is required at
the function call to disambiguate the Num class.

gsum (True, [3, 4 :: Int ]) ≡ 7

Defining generic sum with type classes loses the simple notation
of pattern matching (including the wildcard case) but has three sig-
nificant advantages over the representation-based definition: eas-
ier invocation as seen above, a static description of the domain of
gsum , and extensibility to new types. By defining gsum with a type
class we can statically prevent gsum from being called with types
that contain functions, and we can extend the definition of gsum at
any time with a case for a new user-defined type.

Disregarding the extensibility issue for the moment, we see that
representation types make generic sum easier to define whereas
type classes make it easier to use. However, by using type classes
and representation types together, we can get the advantages of both
definitions.

Consider a class Rep that includes all types that are repre-
sentable.

class Rep a where rep :: R a

The instances of this class are the data constructors of the
representation type.

instance Rep Int where rep = Int
instance Rep () where rep = Unit
instance Rep Bool where rep = Bool



instance Rep Char where rep = Char
instance (Rep a,Rep b) ⇒ Rep (a, b)

where rep = Pair rep rep
instance (Rep a,Rep b) ⇒ Rep (a → b)

where rep = Arrow rep rep
instance (Rep a) ⇒ Rep [a ]

where rep = List rep

We use this class by declaring that the class GSum is a subclass
of Rep, which allows a default definition for the gsum method in
terms of gsumR.

class Rep a ⇒ GSum a where
gsum :: a → Int
gsum = gsumR rep

Because of the default method, the instances of this class are
trivial. In particular, there is no repeated logic between the instances
and the definition of gsumR. Instead, the instances “derive” the
definition of gsum for these particular types.

instance GSum Int
instance GSum ()
instance GSum Bool
instance GSum Char
instance (GSum a,GSum b) ⇒ GSum (a, b)
instance GSum a ⇒ GSum [a ]

Defining the type-indexed operation in this manner demonstrates
the different roles that type classes and representation types should
play. The representation-type implementation describes the behav-
ior of the type-indexed operation and the type class limits its do-
main to acceptable types. Of course, the underlying implementa-
tion gsumR is still available, and the user must be careful not to
call this operation with functions, but type classes make it more
convenient to use gsum correctly.

However, we have gained little so far. The extensibility problem
remains because this type class can only be instantiated for a hand-
ful of types. In the next section, we develop a more general repre-
sentation type that can represent the structure of arbitrary datatypes
and allow the definition of gsumR based on that structure.

3. Datatype-generic programming
The representation type defined in the previous section could only
represent a handful of types. Furthermore, it does not allow us to
implement gsumR based on the structure of the represented type.
In particular, we would like to define the behavior of gsumR for
both Pairs and Lists with the same code.

In this section, we describe a representation type that can gener-
ically represent the structure of all Haskell 98 datatypes. Consider
the following revised definition of the R type:

data R a where
Int :: R Int
Char :: R Char
Arrow :: R a → R b → R (a → b)
Data :: DT → [Con R a ] → R a

We represent all datatypes, both built-in and user-defined, with
the new data constructor Data . Therefore, we no longer need the
constructors List , Pair , Bool and Unit in the R type.

The Data constructor takes two arguments: information about
the data type itself DT and information about each of the data
constructors that make up the datatype (the list of Con R a). In
Section 3.1 below, we begin our discussion with the design of Con
and then in Section 3.2 we cover DT .

3.1 Representing data constructors
The Con datatype describes data constructors (such as Leaf or
Branch).

data Con c a = ∀ l .Con (Emb l a) (MTup c l)

The parameter a is the datatype that these constructors belong to.
The parameter c provides generality that will be used in the next
section. Here, this parameter is always instantiated by the type R.
This datatype includes three components, a type l that is a type
list containing the types of the arguments of the constructor, an
embedding-projection pair, Emb l a , between the arguments of the
constructor and the datatype a , and MTup c l , the representation
of the type list.

The ∀ in the definition of Con means that it includes an existen-
tial component [26]—an argument of type l is required for the data
constructor Con , but l does not appear as an argument to the type
constructor Con . Instead, l hides a type list (similar to a heteroge-
nous list [20]) so that we can uniformly represent data constructors
that take different numbers and different types of arguments. Type
lists are defined by the following two single-constructor datatypes.
(By convention, the type variable a stands for an arbitrary type,
while the type variable l stands for a type list. )

data Nil = Nil
data a :∗: l = a :∗: l
infixr 7 :∗:

Note that type lists generalize n-tuples. For example, the type
(Int :∗: Char :∗: Nil) is isomorphic to the pair type (Int ,Char).

example1 :: (Int :∗: Char :∗: Nil)
example1 = 2 :∗: ’b’ :∗: Nil

The second ingredient we need in the representation of a data
constructor for a datatype a is some way of manipulating argu-
ments of type a in a generic way. In particular, given an a , we
would like to be able to determine whether it is an instance of this
particular data constructor, and if so extract its arguments. Also,
given arguments of the appropriate types, we should be able to con-
struct an a .

Therefore, Con includes an embedding-projection pair between
the arguments of the constructor and the datatype, containing a
generic version of a constructor and a generic destructor.

data Emb l a = Emb{to :: l → a,
from :: a → Maybe l }

For example, below are the embedding-projection pairs for the
constructors of the Tree datatype:

rLeafEmb :: Emb (a :∗: Nil) (Tree a)
rLeafEmb = Emb
{to = λ(a :∗: Nil) → (Leaf a),
from = λx → case x of

Leaf a → Just (a :∗: Nil)
→ Nothing }

rBranchEmb ::
Emb (Tree a :∗: Tree a :∗: Nil) (Tree a)

rBranchEmb = Emb
{to = λ(l :∗: r :∗: Nil) → (Branch l r),
from = λx → case x of

Branch l r → Just (l :∗: r :∗: Nil)
→ Nothing }

Finally, the third component of the Con datatype is MTup c l ,
the representation of the type list l . We form this representation
with the following GADT.



data MTup c l where
MNil :: MTup c Nil
(:+:) :: Rep a ⇒ c a → MTup c l → MTup c (a :∗: l)

infixr 7 :+:

Like the R type, the type index describes what type list the term
represents. The (:+:) constructor includes Rep a in its context so
that, as this list is destructed, this representation may be implicitly
provided. For now, the c a component duplicates the representation
in the context and is useful for disambiguation. In this way, the type
MTup R l represents a list of types.

example2 :: MTup R (Int :∗: Char :∗: Nil)
example2 = Int :+: Char :+: MNil

To form the representations of the data constructors Leaf and
Branch , we need the representation of the type a to satisfy the
class constraint of (:+:). The ∀ in the type annotations of rLeaf and
rBranch bind the lexically-scoped type variable a so that it may be
used in the type annotations that specify which type representations
to use.

rLeaf :: ∀ a.Rep a ⇒ Con R (Tree a)
rLeaf = Con rLeafEmb ((rep :: R a) :+: MNil)

rBranch :: ∀ a.Rep a ⇒ Con R (Tree a)
rBranch = Con rBranchEmb

((rep :: R (Tree a)) :+:
(rep :: R (Tree a)) :+: MNil)

The definition of Con described in this section contains only the
minimum information required for representating data construc-
tors. In the the RepLib library implementation, this datatype also
includes additional information about the data constructor, such as
a string containing the name of the constructor, its fixity, and the
names of any record labels. Here, we have elided those compo-
nents.

3.2 The DT type
The DT component of the datatype representation contains infor-
mation instrinsic to the datatype itself, including the name of the
datatype and the representation of its parameters.

data DT = ∀ l .DT String (MTup R l)

For example, we can represent the type Tree with the following
instance of the Rep class.

instance Rep a ⇒ Rep (Tree a) where
rep = Data (DT "Tree" ((rep :: R a) :+: MNil))

[rLeaf , rBranch ]

Including the name of the datatype in its representation and the
representations of any type parameters is necessary to distinguish
between types that have the same structure. Therefore type-safe
cast [38] of type

cast :: (Rep a,Rep b) ⇒ a → Maybe b

and the related generalized cast

gcast :: (Rep a,Rep b) ⇒ c a → Maybe (c b)

can be implemented. Without this information, these operations
cannot enforce the distinction between isomorphic type.2

Also, displaying the representation of types such as Tree Int or
Tree Bool requires both of the components of DT . The instance

2 While the basic cast may be implemented by decomposing and recon-
structing its argument, the implementation of the generalized cast requires
the use of an unsafe type cast. However, for practical reasons, basic cast is
also implemented with primUnsafeCoerce# in the implementation.

data Val c a = ∀ l .Val (Emb l a) (MTup c l) l

findCon :: [Con c a ] → a → Val c a
findCon (Con emb reps : rest) x = case (from emb x ) of

Just kids → Val emb reps kids
Nothing → findCon rest x

findCon [ ] x = error "Invalid representation"

foldl l :: (∀ a.Rep a ⇒ c a → b → a → b) → b
→ (MTup c l) → l → b

foldl l f b MNil Nil = b
foldl l f b (ra :+: rs) (a :∗: l) = foldl l f (f ra b a) rs l

map l :: (∀ a.Rep a ⇒ c a → a → a)
→ MTup c l → l → l

map l t MNil Nil = Nil
map l t (r :+: rs) (a :∗: a1 ) = (t r a :∗: map l t rs a1 )

Figure 1. Library operations for defining type-indexed functions

of Show below displays a representation type. Note that pattern
matching allows a natural definition for showing a list of type
parameters.

instance Show (R a) where
show Int = "Int"

show Char = "Char"

show (Arrow r1 r2 ) =
"(" ++ (show r1 ) ++ " -> " ++ (show r2 ) ++ ")"

show (Data (DT str reps) ) =
"(" ++ str ++ show reps ++ ")"

instance Show (MTup R l) where
show MNil = ""

show (r :+: MNil) = show r
show (r :+: rs) = " " ++ show r ++ show rs

In the case of Data , the information about the data constructors is
ignored. Instead the string and representations of the type parame-
ters are used.

The representation of the datatype need only be created once,
when the datatype is defined. (However, even if it is not done then,
it may be created by any module that knows its definition.) In this
way, Data may represent a wide range of datatypes, including pa-
rameterized datatypes (such as Tree), mutually recursive datatypes,
nested datatypes, and some GADTs. Section 6.3 discusses the ex-
pressiveness of this representation type in more detail. Further-
more, given the definition of such datatypes (except for GADTs),
RepLib includes Template Haskell code to automatically generate
its representation and instance declaration for the Rep type class.

3.3 Examples of type-indexed functions
Once we can represent datatypes structurally, we can define op-
erations based on that structure. Consider the implementation of
generic sum with this new representation:

gsumR :: R a → a → Int
gsumR Int x = x
gsumR (Arrow r1 r2 ) f = error "urk"

gsumR (Data rdt cons) x = findCon cons
where findCon (Con emb reps : rest) =

case (from emb x ) of
Just kids → gsumRl reps kids
Nothing → findCon rest

findCon [ ] = error "Invalid representation"



-- Type structure-based definition
gsumR :: R a → a → Int
gsumR Int x = x
gsumR (Arrow r1 r2 ) f = error "urk"

gsumR (Data rdt cons) x =
case (findCon cons x ) of

Val reps kids →
foldl l (λr a b → (gsumR r a) + b) 0 reps kids

gsumR x = 0

-- Type class with default definition
class Rep a ⇒ GSum a where

gsum :: a → Int
gsum = gsumR rep

-- Enable gsum for common types
instance GSum Int
instance GSum Bool

-- etc ...

Figure 2. Generic Sum

gsumR x = 0

gsumRl :: MTup R l → l → Int
gsumRl MNil Nil = 0
gsumRl (r :+: rs) (a :∗: l) = gsumR r a + gsumRl rs l

The new part of this example is the case for Data . Given an
argument of type a , the auxiliary function findCon iterates through
the data constructors until it finds the appropriate one and then
calls gsumR on all of the arguments to this constructor, adding
the results together.

Note that findCon should never reach the [ ] case. If we have
correctly represented the datatype, then one of the generic destruc-
tors will be able to decompose the type. This looping pattern ap-
pears often in type-indexed code, so it makes sense to factor it out.
In Figure 1, we define the function findCon that performs this loop.
The result of this function must existentially bind the type list—so
we also define a new data constructor Val that contains the argu-
ments of the data constructor, the representation of their types, and
the embedding-projection pair for that data constructor.

Furthermore, once we have found the appropriate data construc-
tor, the next step is often to iterate over the list of kids. Therefore,
Figure 1 also contains the analogues of foldl and map for type lists.

With these operations, we can rewrite the Data branch for
gsumR more succinctly as shown in Figure 2. (Note that because
of the existential component of Val , we must use case instead
of let to pattern match the result of findCon .) This Figure is
the complete definition of generic sum, including the type class
definition discussed in the previous section. If a programmer would
like to derive an instance of GSum for a new type, he need only
make sure that the representation of that type is available and then
create the trivial instance of GSum for the new type.

The operations in Figure 1 make the definitions of some type-
indexed functions very concise. For example, deepSeq below is
an operation that fully evaluates its first argument. (The built-in
Haskell operation seq only reduces its first argument to the outer-
most data constructor. This operation also recursively evaluates all
of the kids of the data constructor too.)

deepSeqR :: R a → a → b → b
deepSeqR (Data dt cons) = λx →

case (findCon cons x ) of
Val reps args →

foldl l (λra bb a → (deepSeqR ra a).bb) id reps args
deepSeqR = seq

Unlike many other type-directed operations, deepSeq makes sense
for all representable types. Therefore, we do not use a type class
to govern its usage, only a wrapper to provide the representation
argument from the context.

deepSeq :: Rep a ⇒ a → b → b
deepSeq = deepSeqR rep

The operations gsum and deepSeq are examples of type-
indexed consumers—functions that use type information to decom-
pose an argument of that type. RepLib can also define producers.
These functions, such as the zero operation below, create values of
a given type.

class Rep a ⇒ Zero a where
zero :: Rep a ⇒ a
zero = zeroR rep

zeroR :: R a → a
zeroR Int = 0
zeroR Char = ’0’

zeroR (Arrow z1 z2 ) = const (zeroR z2 )
zeroR (Data dt (Con emb rec : rest)) =

to emb (fromTup zeroR rec)

fromTup :: (∀ a.Rep a ⇒ c a → a) → MTup c l → l
fromTup f MNil = Nil
fromTup f (b :+: l) = (f b) :∗: (fromTup f l)

“Scrap your boilerplate” programming Representation types
can implement many of the same operations as the “Scrap your
boilerplate” (SYB) library by Lämmel and Peyton Jones [21]. For
example, one part of the SYB library defines generic traversals
over datatypes, using the type-indexed operations mkT , mapT
and everywhere . Below, we show how to implement those opera-
tions with representation types.

A traversal is a function that has a specific behavior for a par-
ticular type (or set of types) but is the identity function everywhere
else. In this setting, traversals have the following type:

type Traversal = ∀ a.Rep a ⇒ a → a

The mkT function constructs traversals by lifting a monomor-
phic function of type t → t to be a Traversal .

mkT :: (Rep a,Rep b) ⇒ (a → a) → b → b
mkT f = case (cast f ) of

Just g → g
Nothing → id

Next, the mapT function below extends a basic traversal to a “one-
layer” traversal by maping the traversal across the subcomponents
of a data constructor. Note that the annotation of the return type
a → a binds the lexically scoped type variable a so that we may
refer to it in the annotation R a .

mapT :: Traversal → Traversal
mapT t :: a → a =

case (rep :: R a) of
(Data str cons) → λx →

case (findCon cons x ) of
Val emb reps kids →

to emb (map l (const t) reps kids)
→ id

Finally, the everywhere combinator applies the traversal to
every node in a datatype. The definition of everywhere is exactly
the same as in the SYB library.



everywhere :: Traversal → Traversal
everywhere f x = f (mapT (everywhere f ) x )

With these these operations we can compile and execute the “par-
adise” benchmark. Although the definition of the type Traversal
and the implementation of mapT are different in this setting, these
operations may be used in exactly the same way as before. For ex-
ample, an operation to increase all salaries in a Company data
structure may be implemented with a single line, given the inter-
esting case for increasing salaries.

increase :: Float → Company → Company
increase k = everywhere (mkT (incS k))

incS :: Float → Salary → Salary
incS k (S s) = S (s ∗ (1 + k))

This implementation of SYB with representation types was
inspired by toSpine view of datatypes of Hinze et al. [13]. The
generic view in this paper is at least as expressive as that view—we
could use it to implement their toSpine operation.

Polymorphic equality However, representation types are some-
times more natural to program with than the SYB library or spines.
Both have difficulty with type-indexed producers, requiring new
basic operations (such as gunfoldr) or a new view of types. Poly-
morphic equality is another example. It requires a “twin-traversal”
scheme in SYB [22]. With spines, it must be generalized to com-
pute equality between arguments of two different types. Using rep-
resentation types we can express this operation more naturally:

eqR :: R a → a → a → Bool
eqR Int = (≡)
eqR Char = (≡)
eqR (Arrow t1 t2 ) = error "urk"

eqR (Data cons) = λx y → loop cons x y
where loop (Con emb reps : rest) x y =

case (from emb x , from emb y) of
(Just p1 , Just p2 ) → eqRl reps p1 p2
(Nothing ,Nothing) → loop rest x y
( , ) → False

eqRl :: MTup R l → l → l → Bool
eqRl MNil Nil Nil = True
eqRl (r :+: rs) (p1 :∗: t1 ) (p2 :∗: t2 ) =

eqR r p1 p2 ∧ eqRl rs t1 t2

The above function determines how the structure of a type
determines the implementation of polymorphic equality. However,
the Eq class already exists as part of the Haskell Prelude, so
we cannot modify it to use eqR as the default definition of (≡).
However, for each specific type, we can use eqR in the Eq instance.
For example, we may define polymorphic equality for trees with the
following instance.

instance (Rep a,Eq a) ⇒ Eq (Tree a)
where (≡) = eqR rep

We might create such an instance when deriving is not available—
for example, if we could not modify the datatype declaration for
Tree because it is another module. Note that, in this instance, we
require that the parameter type a be a member of the Eq class even
though we do not use the a definition of (≡). This constraint en-
sures that we do not call polymorphic equality on types, such as
arrow types, that are representable but do not support polymorphic
equality.

4. Specializable type-indexed functions
There is a serious problem with the definition of gsum presented in
the previous section—it does not interact well with other instances

-- An explicit dictionary for the type class
data GSumD a = GSumD{gsumD :: a → Int }
instance GSum a ⇒ Sat (GSumD a) where

dict = GSumD gsum

-- Type structure based definition
gsumR1 :: R1 GSumD a → a → Int
gsumR1 Int1 x = x
gsumR1 (Arrow1 r1 r2 ) f = error "urk"

gsumR1 (Data1 dt cons) x =
case (findCon cons x ) of

Val emb rec kids →
foldl l (λca a b → (gsumD ca b) + a) 0 rec kids

gsumR1 x = 0

-- Type class with default definition
class Rep1 GSumD a ⇒ GSum a where

gsum :: a → Int
gsum = gsumR1 rep1

-- Enable gsum for common types
instance GSum Int
instance GSum Bool

-- etc...

-- Special case for sets
instance GSum IntSet where

gsum (IS l1 ) = gsum (nub l1 )

Figure 3. Specializable Generic Sum

of the GSum class. To make this issue more concrete, consider the
following example. First, define a new type of sets of integers and
its representation in the way described above.

newtype IntSet = IS [Int ]

rSEmb :: Emb ([Int ] :∗: Nil) IntSet
rSEmb = Emb{to = λ(il :∗: Nil) → IS il ,

from = λ(IS il) → Just (il :∗: Nil)}
instance Rep IntSet where

rep = Data (DT "IntSet" MNil)
[Con rSEmb ((rep :: R [Int ]) :+: MNil)]

Because sets are implemented as lists, there is no guarantee that
the list will not contain duplicate elements. This means that we
cannot use the default behavior of gsum for IntSet because these
duplicate elements will be counted each time. Instead, we would
like to use the following definition that first removes duplicates.

instance GSum IntSet where
gsum (IS l1 ) = gsum (nub l1 )

Unfortunately, with this instance, the behavior of generic sum
for IntSets depends on whether they appear at top level (where the
correct definition is used) or within another data structure (where
the default structure-based equality is used).

gsum (IS [1, 1]) ≡ 1
gsum (Leaf (IS [1, 1])) ≡ 2

To solve this problem, we introduce parameterized representa-
tions that allow type-indexed operations to be specialized for spe-
cific types.



4.1 Parameterized representations
The key idea for parameterized representations is to add a level
of indirection. In a recursive call to a type-indexed function, we
should first check to see if there is some specialized definition for
that type instead of the generic definition. These recursive calls
are made on the “kids” of data constructors. Concretely, we enable
this check by augmenting the representations of data constructors
with explicit dictionaries that possibly contain specific cases for a
particular operation.

The dictionary may be for any type-indexed operation. There-
fore, we parameterize the type R1 below with the type of the dic-
tionary, c. A representation of type R1 c a may only be used to
define a type-indexed operation of type c a . (Note that new defini-
tions in this Section end with 1 to distinguish them from those of
the previous section.)

data R1 c a where
Int1 :: R1 c Int
Char1 :: R1 c Char
Arrow1 :: (Rep a,Rep b) ⇒

c a → c b → R1 c (a → b)
Data1 :: DT → [Con c a ] → R1 c a

As before, we create a (now multiparameter) type class to auto-
matically supply type representations. So that we may continue to
support all previous operations, such as cast , we make this class a
subclass of Rep.

class Rep a ⇒ Rep1 c a where
rep1 :: R1 c a

A function to create representation types must abstract the con-
texts that should be supplied for each of the kids. For example, the
representation of Trees below abstracts the explicit dictionaries ca
and ct for the type parameters a and the type Tree a that appear in
the kids of Leaf and Branch .

rTree1 :: ∀ a c.
(Rep a) ⇒ c a → c (Tree a) → R1 c (Tree a)

rTree1 ca ct =
Data1 (DT "Tree" ((rep :: R a) :+: MNil))

[Con rLeafEmb (ca :+: MNil),
Con rBranchEmb (ct :+: ct :+: MNil)]

It is the job of the the instance declaration that automatically
creates the representation of the tree type to supply these dictionar-
ies. These dictionaries are provided by instances of the type class
class Sat . This type class can be thought of as a “singleton” type
class, the class of types that contain a single value. 3

class Sat a where
dict :: a

The instance declaration for the representation of trees requires
that the appropriate dictionaries be available. Note that this in-
stance declaration requires undecidable instances as the constraint
Sat (c (Tree a)) includes non-variables in the type.

instance (Rep a,Sat (c a),Sat (c (Tree a))) ⇒
Rep1 c (Tree a) where

rep1 = rTree1 dict dict

Likewise, the representation of IntSet requires an instance of
Sat for its kid, of type [Int ].

3 In fact, the type R t is also a singleton type for any t . Therefore, we could
replace the class Rep with Sat (R a).

instance Sat (c [Int ]) ⇒ Rep1 c IntSet where
rep1 = Data1 (DT "IntSet" MNil)

[Con rSEmb (dict :+: MNil)]

Creating parameterized representations is only half of the task.
The other half is defining type-indexed operations so that they
take advantage of this specilizability. Consider the definition of
a specializable version of generic sum, shown in Figure 3. The
first step is to create a dictionary for this operation and a generic
instance declaration for Sat for each type using this dictionary.
This instance declaration stores whatever definition of polymorphic
equality is available for the type a in the dictionary.

Next, we define the type-indexed operation with almost the
same code as before. The only difference is the call gsumD that
accesses the stored dictionary instead of calling gsumR1 directly.
In fact, we cannot call gsumR1 recursively, as Con does not
include R1 representations for its kids. This omission means that
we must use the special cases for each type.

As a result, this time, the type-indexed definition of generic sum
for trees uses the special case for IntSets.

gsum (IS [1, 1]) ≡ 1
gsum (Leaf (IS [1, 1])) ≡ 1

4.2 Calling other type-indexed operations
What if a type-indexed operation depends on other type-indexed
operations? For example, a function to increase salaries may need
to call an auxiliary function to determine whether the salary in-
crease is eligible. One might think that this operation may be dif-
ficult to define here, as the parameterized representation type must
be specialized to a particular type-indexed operation prior to use.

However, as usual, type classes provide access to all type-
indexed operations, regardless of whether they are implemented
with representation types.

For example, consider the inc operation below. It is not really
important what it does, only that it depends on zero and polymor-
phic equality. Therefore, this dependence appears in the context of
incR and is satisfied by making Eq and Zero superclasses of Inc.

incR1 :: (Eq a,Zero a) ⇒ R1 IncD a → a → a
incR1 r a = if a ≡ zero

then a
else case r of

Int1 → a + 1
Data1 cons →

case findCon cons a of
Val emb kids rec →

to emb (map l incD rec kids)
→ a

class (Eq a,Zero a,Rep1 IncD a) ⇒ Inc a where
inc :: a → a
inc = incR1 rep1

Mutually recursive operations may also follow this pattern, re-
quiring that they be superclasses of each other. However, a better
pattern is to store such mutually recursive operations in the same
type class. In that case, recursive dictionaries are not required and
it is clear that a particular type must support both operations.

4.3 Abstract types
Suppose some type T is imported abstractly from another module.
Even though we may know nothing about this type, we may still
construct a representation for it.

instance Rep T where
rep = Data (DT "T" MNil) [ ]



This representation includes the name of the type and the repre-
sentations of any type parameters (none in this case) but otherwise
contains no other information about the type. Because the struc-
ture of the type is not known, this representation cannot be used to
derive instances of structurally-defined operations such as gsum .

However, this representation is still important. First, it provides
the necessary superclass context so that, if the module also exported
a specialized gsumT operation, that operation can be used in an
instance of the GSum type class for the type T .

instance GSum T where gsum = gsumT

Furthermore, this representation contains just enough information
for a few representation-based operations, such as cast , gcast , and
the instance of Show for representation types.

Also, types may be represented partially. Sometimes a module
may export some data constructors, but hide others. In that case,
the representation can only contain the data constructors that are
available.

4.4 Design trade-offs
There are a number of choices that occur in the design of the
datatype MTup. Let us briefly examine the consequences of a few
variations on the R1 type (assuming that the R type continues to
use the old definition of MTup).

• Omit Rep a from the context

data MTup c l where
MNil :: MTup c Nil
(:+:) :: c a → MTup c l → MTup (a :∗: l)

The context Rep a ensures that we can always convert a param-
eterized representation R1 c a to a simple representation R a .
This means that all operations defined for type R are available
for type R1 . Furthermore, this context allows us to call unspe-
cializable operations (such as cast) on the kids of a data con-
structor.

• Include parameterized representations for all kids

data MTup c l where
MNil :: MTup c Nil
(:+:) :: Rep1 c a ⇒

c a → MTup c l → MTup (a :∗: l)

This definition would allow a type-indexed operation to ignore
specializations for certain kids. It is not clear how that expres-
siveness would be useful. Furthermore, such representations are
much more difficult to construct.

• Include parameterized representations for some kids

data MTup c l where
MNil :: MTup c Nil
(:+:) :: Rep a ⇒ c a → MTup c l → MTup (a :∗: l)
(:−:) :: Rep a ⇒

R1 c a → MTup c l → MTup (a :∗: l)

One deficiency in the representation described in this section is
that it does not extend smoothly nested datatypes. In that case,
the undecidable instance declarations really are undecidable, as
the type checker must satisfy ever larger type contexts.
For example, consider the following nested datatype for per-
fectly balanced trees:

data Sq a = L a | Br (Sq (a, a))

Following the pattern described above, we define a function to
construct its parameterized representation.

rSq1 :: ∀ a c.
Rep a ⇒ c a → c (Sq (a, a)) → R1 c (Sq a)

rSq1 c d = Data1 (DT "Sq" ((rep :: R a) :+: MNil))
[Con rLEmb (c :+: MNil),
Con rBREmb (d :+: MNil)]

However, trouble arises if we try to use this function in the
instance of the Rep1 class. This instance requires a constraint
Sat (c (Sq (a, a))) that can never be satisfied. (Note that it
is the Sat constraint that causes the problem—we can create an
instance of Rep for Sq in the usual manner.)

instance (Rep a,Sat (c a),Sat (c (Sq (a, a))) ⇒
Rep1 c (Sq a) where

rep1 = rSq1 dict dict

Using the revised definition of MTup above, we can eliminate
this unsatisfiable constraint. We do not lose any expressiveness
because if a type-indexed operation uses the structure-based
definition for Sq , it should do so for every recursive call.

rSq1 :: ∀ a c.Rep a ⇒ c a → R1 c (Sq a)
rSq1 d1 = Data1 (DT "Sq" ((rep :: R a) :+: MNil))

[Con rLEmb (d1 :+: MNil),
Con rBREmb (rSq1 d1 :−: MNil)]

instance (Rep a,Sat (c a)) ⇒ Rep1 c (Sq a) where
rep1 = rSq1 dict

However, although this definition allows us to create an instance
of Rep1 for Sq , it complicates the definitions of all type-
indexed functions. Furthermore, the lack of a Rep1 instance for
Sq is not that limiting. Using our existing definitions, for each
particular type indexed function we can still generate structure-
based definitions for nested datatypes.

instance (Rep a,GSum a,GSum (Sq a)) ⇒
GSum (Sq a) where

gsum = gsumR1 (rSq1 dict dict)

• Store the special cases in the context.

data MTup c a where
MNil :: MTup c Nil
(:+:) :: (Rep a,Sat (c a)) ⇒

MTup c l → MTup c (a :∗: l)

Defining type-indexed operations with the simple representa-
tions is made somewhat simpler by the fact that the representa-
tions of the kids are in the context. (For example, the definition
of mkT in the previous section would require more manipula-
tion of representations.)
However, in this case, little is gained, as dictionaries must still
be explicitly manipulated. Furthermore, this change comes with
a loss in expressiveness. The context Sat (c a) says that there
can be only one dictionary for the type a . In the next section,
we discuss how the ability to have multiple dictionaries leads to
greater expressiveness.

5. Dynamic extensibility
The previous section covered “static specialization”—a special
case was incorporated into a type-indexed function at compile time.
A related issue is dynamic specialization—the ability to specialize
the behavior of a type-indexed function for a particular type during
a particular execution of a type-indexed function.

A motivating application of dynamic specializability is type
constructor analysis [9, 35, 39]. Some operations are indexed by
type constructors instead of types. The key to implementing these



operations is that the type-indexed operation must temporarily treat
the argument of the type constructor in a special way.

For example, consider a generalization of “fold left” that folds
over any parameterized data structure as if it were a list.

class FL t where
foldLeft :: Rep a ⇒ (b → a → b) → (b → t a → b)

The first argument of foldLeft is actually a special case for the
type variable a of the type-indexed function lreduce below.

data LreduceD b c = LR{ lreduceD :: b → c → b}
instance Lreduce b c ⇒ Sat (LreduceD b c) where

dict = LR (lreduce)

class Rep1 (LreduceD b) c ⇒ Lreduce b c where
lreduce :: b → c → b
lreduce = lreduceR1 rep1

lreduceR1 :: R1 (LreduceD b) c → b → c → b
lreduceR1 (Data1 rdt cons) b c =

case (findCon cons c) of
Val rcd rec args →

foldl l lreduceD b rec args
lreduceR1 b c = b

The lreduceR1 function takes an argument b and returns it,
passing it through the data structure c. Importantly, a special case of
lreduce might do something different than ignore c. This is how we
define foldLeft . We embed its first argument inside a parameterized
representation and call lreduceR1 directly.

For example, the instance for trees is below. Recall that rTree1
takes two arguments. The first is the special case for the parameter
a , the second is the dictionary for Tree a . To construct the dictio-
nary for Tree a , we must call foldLeft recursively.

instance FL Tree where
foldLeft op =

lreduceR1 (rTree1 (LR op) (LR (foldLeft op)))

Just as foldl is used for lists, the foldLeft function can be used to
derive a number of useful operations for trees. Below are only a
few examples:

gconcat :: (Rep a,FL t) ⇒ t [a ] → [a ]
gconcat = foldLeft (++) [ ]

gall :: (Rep a,FL t) ⇒ (a → Bool) → t a → Bool
gall p = foldLeft (λb a → b ∧ p a) True

gand :: (FL t) ⇒ t Bool → Bool
gand = foldLeft (∧) True

Note that none of these above examples are specialized to the type
constructor Tree . Any instance of the class FL may be used, and
deriving these instances only requires the analogue to rTree1 .

However, there is one caveat. Spurious type class assumptions
show up in the contexts in some of these functions. For example,
gconcat requires Rep a even though this type representation is
never used. The reason for this constraint is that, for full flexibility,
the R1 GADT stores the representations of all “kid” types. This
ensures that the R1 type can always be used as an R—allowing
operations such as casting and showing the type representation.
As discussed in the previous section, an alternative is to create
an additional stripped down version of the R1 type that does not
include these representations. For simplicity we have not done so—
we need more experience to determine whether this extra constraint
is limiting in practice.

5.1 Arity 2 parameterization
Unfortunately the GADT R1 can only define type-constructor op-
erations of arity one. Hinze [9] has noted that generializing these
operations to multi-arities is necessary to define operations like
fmap (requiring arity two) and zip (requiring arity three). To sup-
port such definitions in this framework requires another represen-
tation of datatypes.

data R2 c a b where
Int2 :: R2 c Int Int
Char2 :: R2 c Char Char
Arrow2 :: c a1 b1 → c a2 b2 →

R2 c (a1 → a2 ) (b1 → b2 )
Data2 :: String → [Con2 c a b ] → R2 c a b

data Con2 c a b =
∀ l1 l2 .Con2 (Emb l1 a) (Emb l2 b)

(MTup2 c l1 l2 )

data MTup2 c l1 l2 where
MNil2 :: MTup2 c Nil Nil
(:∗∗:) :: c a b → MTup2 c l1 l2

→ MTup2 c (a :∗: l1 ) (b :∗: l2 )

infixr 7 :∗∗:
Note that this version has been simplified, as it does not include

any Rep a constraints. Before these representations ensured that
there was enough information in this datatypes to enable operations
such as cast . However, this functionality came at the expense of
requiring Rep a for the arguments of data constructors. Instead,
the R2 representation is only intended to be used for defining
operations such as fmap, so we do not include it here.

With this infrastructure we, may define a generic map as below.
As usual, generic map is undefined for function types. (To extend
generic map to function types, we must define it simultaneously
with its inverse [25].) For datatypes, generic map iterates the map-
ping function over the kids of the data constructor. For all other
base types, generic map is an identity function.

mapR2 :: R2 (→) a b → a → b
mapR2 (Arrow2 ) = error "urk"

mapR2 (Data2 rdt cons) = λx →
let loop (Con2 rcd1 rcd2 ps : rest) =

case from rcd1 x of
Just a → to rcd2 (mapRL2 ps a)
Nothing → loop rest

in loop cons
mapR2 Int2 = id
mapR2 Char2 = id

mapRL2 :: MTup2 (→) l1 l2 → l1 → l2
mapRL2 MNil2 Nil = Nil
mapRL2 (f :∗∗: rs) (a :∗: l) = f a :∗: mapRL2 rs l

The arity-2 representation of a type constructor is similar to the
arity-1 representation, and may also be automatically generated.
For example, the definition of rTree2 is below.

rTree2 :: ∀ a b c.c a b → c (Tree a) (Tree b)
→ R2 c (Tree a) (Tree b)

rTree2 a t = Data2 "Tree"

[Con2 rLeafEmb rLeafEmb (a :∗∗: MNil2 ),
Con2 rBranchEmb rBranchEmb (t :∗∗: t :∗∗: MNil2 )]

The definition of mapR2 and the representation of Tree derives
an instance for the Functor constructor class.

instance Functor Tree where
fmap f = mapR2 (rTree2 f (fmap f ))



-- Universal operations
cast :: (Rep a,Rep b) ⇒ a → b
gcast :: (Rep a,Rep b) ⇒ c a → c b
deepSeq :: Rep a ⇒ a → b → b
subtrees :: Rep a ⇒ a → [a ]

-- Prelude operations
eqR1 :: R1 EqD a → a → Bool
compareR1 :: R1 CompareD a → a → Ordering
minBoundR1 :: R1 BoundedD a → a
maxBoundR1 :: R1 BoundedD a → a
showsPrecR1 :: R1 ShowD a → ShowS

-- Specializable operations
gsum :: GSum a ⇒ a → Int
zero :: Zero a ⇒ a
generate :: Generate a ⇒ Int → [a ]
shrink :: Shrink a ⇒ a → [a ]
lreduce :: Lreduce a ⇒ b → a → b
rreduce :: Rreduce a ⇒ a → b → b

Figure 4. Some type-indexed functions of RepLib

Representable forms
Base types Int
Parameterized base types τ1 → τ2, IO τ
Newtypes newtype T = MkT Int
Uniform datatypes data Nat = Z | S Nat
Base-kind parameters Maybe , [ ]
Abstract types, void types data T
Nested datatypes data Sq a = L a | B (Sq (a, a))
Simple GADTs data T a where I :: T Int

Unrepresentable forms
GADTs with existentials data T a where C :: b → T Int
Existential polymorphism data T = ∀ a.MkT a (a → T )
Universal polymorphism data T = MkT (∀ a.a → a)
Higher-kinded parameters data T c = MkT (c Int)

Figure 5. Expressiveness of Representation types

6. Discussion
6.1 Dynamic typing
The main application of the technology presented in this paper
is to simplify the implementation of type-directed operations, by
providing a mechanism similar to deriving.

However, representation types have also often been used to im-
plement Dynamic typing [1]. Type Dynamic may be implemented
simply by pairing a value with the representation of its type.

data Dynamic = ∀ a.Rep a ⇒ Dyn a

Dynamic typing allows type information to be truly hidden at
compile time and is essential for services such as dynamic loading
and linking. RepLib supports the operations required for dynamic
typing, such as cast and the run-time discovery of the hidden type
information through pattern matching.

However, with respect to this paper, the utility of dynamic
types is limited as they cannot index specializable operations. Even
though the mechanism in Section 4 is based on representation
types, resolution of special cases occurs at compile time. It is im-
possible to pair a value with its R1 representation because we
cannot create a single R1 representation that works for all type-

indexed functions. Instead, true dynamic typing requires special-
ization mechanisms that have a dynamic semantics. For example,
Washburn and Weirich demonstrate how dynamic aspects can do so
in AspectML [33]. In Haskell, it is not clear how this may be done.

6.2 Pre-defined type-indexed operations
RepLib is not just a framework for defining type-indexed opera-
tions, but also a library of such operations. Some users of RepLib
may never use, or even understand, representation types. Instead,
they will rely on the predefined operations.

The operations in RepLib can be divided into three categories.
Figure 4 lists representatives from each category. The first sort are
defined for all representable types. Using these function requires
merely instantiating the Rep type class, which can be done auto-
matically. These operations include cast , gcast and deepSeq from
before, as well as subtrees , a function that returns all kids that are
the same type as its argument. The second group of operations gen-
erate instances for classes in the Haskell Prelude. These operations
are already supported by deriving, but, as mentioned before, they
can be used when deriving is unavailable.

Finally, RepLib includes classes with default methods. Each of
these classes may be instantiated by empty instance declarations
or by special cases that override the default. The functions gsum
(from Section 4) is one of these functions, as is a specializable
version of zero. Other operations include a function that generates
all members of a type up to a certain size, and shrink , a function
that produces smaller versions of its argument.

The operations defined in Figure 4 are only the beginning. We
hope to extend this library substantially, as well as incorporate
contributions from the users of RepLib.

6.3 Expressiveness of representation types
The types R and R1 defined in Sections 3 and 4 can represent
many, but not all, of GHC’s types. Figure 5 summarizes. Overall,
we expect that most types used by Haskell programmers will be
representable, although we have not done a systematic survey.
Furthermore, all types currently supported by Haskell’s deriving
mechanism are representable.

To some extent the line in Figure 5 is not firmly drawn. It is pos-
sible to develop a more complicated type representation that would
include more of the types below the line, but these modifications
would entail more complexity in the definition of type-indexed op-
erations. For example, we could enable some (but not all) higher-
kinded type parameters by adding more constructors to the MTup
datatype. We could enable some (but not all) datatypes with exis-
tential components by adding a new data constructor to the R type
that generically represents existential binding.

In general, we have not been willing to complicate the imple-
mentation of type-directed functions so that the instances for a few
esoteric types may be automatically derived. Even if a type is not
representable, specific instances for it may still be explicitly pro-
vided. So, where should we draw the line? How rare are some of
the types listed in Figure 5? Only practical experience can answer
these questions. However, we are confident that the current defini-
tions are a good point in the design space.

6.4 Language extensions
Although the purpose of RepLib is to eliminate boilerplate, there
is still some boilerplate required in the definition of an extensible
operation. As future work, we plan to consider language extensions
that could simplify the definition of specializable operations.

In particular, abstraction over type classes (similar to the pro-
posal by Hughes [17] that was used by Lämmel and Peyton
Jones [23]) could help eliminate the boilerplate of reifying type
classes as explicit dictionaries. For example, in the definition of



gsum , we defined the type constructor GSumD to stand-in for
the type class GSum . This allowed the representation type to be
parameterized by a type class. If we had that facility natively, we
could redefine MTup as follows:

data MTup c l where
MNil :: MTup c Nil
(:+:) ::

(Rep a, c a) ⇒ R a → MTup c l → MTup c (a :∗: l)

With this version, we may define gsum , as below, with no boiler-
plate. The only difference from the non-extensible version (in Sec-
tion 3) is the use of the R1 type and the recursive call through the
type class.

class Rep1 GSum a ⇒ GSum a where
gsum :: a → Int
gsum = gsumR1 rep1

gsumR1 :: R1 GSum a → a → Int
gsumR1 Int x = x
gsumR1 (Arrow1 ) x = error "urk"

gsumR1 (Data1 dt cons) x =
case (findCon cons x ) of

Val emb rec kids →
(fold l1 (λ a b → gsum b + a) 0 rec kids

gsumR1 = 0

However, to define operations like foldLeft in the presence of
context paramerization, we must be able to specify an alternate dic-
tionary to be included in the representation. Named type class in-
stances [19] would allow that behavior. Other language extensions
that we plan to consider are mechanisms to support dynamic spe-
cialization of type-indexed functions, as we briefly mentioned in
Section 6.1, and a uniform treatment of kind-indexed types, so that
we may do a better job with higher-kinded type constructors.

7. Related work
Representation types were first introduced in the context of type-
preserving compilation [4]. However, because they provide a clean
way to integrate run-time type analysis into a language with a type-
erasure semantics, Cheney and Hinze [2] showed how to encode
them in Haskell 98 using a derived notion of type equivalence. Rep-
resentation types may also be implemented with a Church encod-
ing [34]. However, in our view GADTs provide the best program-
ming model for representation types: they support simple defini-
tions of type-directed functions via pattern matching and GADT
type refinement automatically propagates the information gained
through this matching without the use of type coercions.

The idea (in Section 2) of using a type class to automatically
provide type representations also appears in Cheney and Hinze’s
First-class phantom types [2]. However, that paper does not use a
default class method, enabling the class to limit the domain of the
type-indexed operation. Instead they create a generic instance that
provides the type-indexed operation for all representable types.

The Rep class is similar to GHC’s Typeable class, except that
Rep uses a GADT for the type representation and Typeable uses
a normal datatype. Functions defined with Typeable therefore re-
quire more uses of cast as there is no connection between argu-
ments and their type representations. Furthermore, in GHC, the
Typeable class may only represent uniform (non-nested) datatypes,
that do not contain existential components, that are not GADTs,
and that are only parameterized by constructors of base kind. In
contrast, the Rep class includes all the above as well as nested
datatypes and some GADTs.

The Typeable type class is the foundation for the “Scrap your
boilerplate” library [21, 22, 23]. This library includes a num-

ber of combinators for assembling type-indexed functions from
smaller components. This style of programming is compatible with
RepLib—in fact we were able to port a module of traversal schemes
(such as everywhere) to RepLib by renaming a single type class.

The idea of generically representing data constructors via iso-
morphisms (in Section 3) was first used by Generic Haskell and
Derivable Type Classes [15], where data constructors were com-
piled to binary sums and products. It first saw specific use with rep-
resentation types in an unpublished manuscript [37, 39] that made
data constructors isomorphic to n-tuples. Recently Hinze, Löh and
others [13, 12, 16] have devised many more generic views of data
types, and provide a detailed comparison of these views. How-
ever, the specific isomorphism between data constructors and list of
types is new to this paper. All of these isomorphisms provide sim-
ilar expressive power—however, we think that manipulating type
lists, either natively or with folds and maps, provides the most nat-
ural definition of type-indexed operations.

Derivable type classes [15] is closely related to the work de-
scribed here. Like Generic Haskell, this approach treats datatypes
as isomorphic to sums of products. However, as Lämmel and Pey-
ton Jones [23] point out, programming with datatypes in this man-
ner is tricky to get right. Furthermore, derivable type classes require
much more specific help from the compiler—the implementation of
a domain specific language for specifying how derivable instances
should be generated.

The idea of parameterizing a representation type to allow type-
constructor analysis (Section 5) first appeared in the authors PhD
thesis [36], and application to Haskell representation types first
appeared in the manuscript mentioned above [37]. In Generics
for the Masses (GM) [10], Hinze translated this code to use type
classes instead of first-class polymorphism, enabling it to be used
with Haskell 98.

The idea that this same parameterization could be used to en-
able extensible type-indexed operations (Section 4) is new to this
paper. It was inspired by the third “Scrap Your Boilerplate” pa-
per of Lämmel and Peyton Jones [23], although the mechanism in
that paper is quite different. One difference is that SYB3 relies on
overlapping instances that automatically enable type-indexed func-
tions for all types. Although overlapping instances are convenient,
they do not permit the designers of type-indexed functions to limit
their domains to a particular set of types. Furthermore, overlapping
instances require careful thought about the context reduction algo-
rithm to ensure that appropriate instances are chosen in each case.
For these reasons, we have not used overlapping instances.

The ideas of Section 4 have been concurrently explored in the
context of the GM framework [27]. Furthemore in the extended ver-
sion of Scrap your Boilerplate Reloaded, Hinze and Löh [14] de-
scribe an extensible version of spine-based generic programming.
Both of these provide a different programming model for type-
indexed functions.

8. Conclusion
More than these individual ideas, the contribution of this paper is
the RepLib library that combines them together in a coherent for-
mat. We intend to distribute and maintain this library, and accu-
mulate new examples of type-indexed operations. Although this li-
brary is specific to GHC, we hope that the extensions that it relies
on—GADTs, scoped type variables, higher-rank polymorphism,
and more flexible instance declarations—will be adopted by future
Haskell compilers.
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[13] Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. Scrap
Your Boilerplate reloaded. In Eighth International Symposium on
Functional and Logic Programming, FLOPS 2006, April 2005.
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driguez. Generic views on data types. In 8th International Conference
on Mathematics of Program Construction, MPC 2006, Kuressaare,
Estonia, July 2006.

[17] John Hughes. Restricted datatypes in Haskell. In Haskell Workshop,
number UU-CS-1999-28, 1999.

[18] Patrick Jansson and Johan Jeuring. PolyP—A polytypic programming
language extension. In Twenty-Fourth ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
470–482, Paris, France, 1997.

[19] Wolfram Kahl and Jan Scheffczyk. Named instances for haskell type
classes. In Haskell Workshop 2001, Firenze, Italy, September 2001.
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