2
Most read
4
Most read
9
Most read
© 2017 IBM Corporation
Spark 2.x Troubleshooting Guide
IBM Big Data Performance
Jesse Chen, jesse.f.chen@gmail.com
3/2017
© 2017 IBM Corporation2
Troubleshooting Spark 2.x
§  Building Spark
§  Running Spark
-  ‘--verbose’
-  Missing external JARs
-  OOM on Spark driver
-  OOM on executors
-  GC policies
-  Spark Thrift Server for JDBC apps
-  HDFS block distribution
-  HDFS blocksize vs Parquet blocksize
§  Profiling Spark
-  Collecting thread & heap dumps in-flight
-  Collecting core dumps after jobs fail
© 2017 IBM Corporation3
Lots of errors when building a new Spark release on my own…
§  Run ‘make-distribution.sh’ (generates ‘bin/spark-shell’, ‘bin/spark-submit’, etc.)
§  Does not always work
-  Wrong JRE version or no JRE found
-  No Maven installed
-  Support for certain components not default, e.g., ‘hive’ support
§  TIP #1: Always explicitly set the following in ‘.bashrc’ for ‘root’
# for Spark distribution compiling
export JAVA_HOME=/usr/jdk64/java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64
export JRE_HOME=$JAVA_HOME/jre
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH
#set maven environment
M2_HOME=/TestAutomation/downloads/tmp/spark-master/build/apache-maven-3.3.9
export MAVEN_OPTS="-Xms256m -Xmx2048m -XX:MaxPermSize=512m"
export PATH=$M2_HOME/bin:$PATH
§  TIP #2: Specify support you want explicitly
-  To build Spark with YARN and Hive support, do:
./dev/make-distribution.sh --name spark-master-2.1 --tgz -Pyarn -Phadoop-2.7 -
Dhadoop.version=2.7.2 -Phive -Phive-thriftserver
© 2017 IBM Corporation4
Building a Spark release is extremely slow …
§  Use more cores to speed up the build process (default uses only 1 core)
§  Rebuild only modified source code (default is “clean”)
Edit the file ‘./dev/make-distribution.sh’, change line
BUILD_COMMAND=("$MVN" –T 1C clean package -DskipTests $@)
To:
BUILD_COMMAND=("$MVN" -T 48C package -DskipTests $@)
** Assuming your have 48 cores on your build machine
** Assuming you don’t need to always build clean, for iterative changes
§  Can cut build time from 45 min to 15 min on a typical 128GB-RAM 48-core node
© 2017 IBM Corporation5
Don’t know what settings used when running Spark …
§  Always use ‘–-verbose’ option on ‘spark-submit’ command to run your workload
§  Prints
-  All default properties
-  Command line options
-  Settings from spark ‘conf’ file
-  Settings from CLI
§  Example output
Spark properties used, including those specified through
--conf and those from the properties file /TestAutomation/spark-2.0/conf/spark-defaults.conf:
spark.yarn.queue -> default
spark.local.dir -> /data1/tmp,/data2/tmp,/data3/tmp,/data4/tmp
spark.history.kerberos.principal -> none
spark.sql.broadcastTimeout -> 800
spark.hadoop.yarn.timeline-service.enabled -> false
spark.yarn.max.executor.failures -> 3
spark.driver.memory -> 10g
spark.network.timeout -> 800
spark.yarn.historyServer.address -> node458.xyz.com:18080
spark.eventLog.enabled -> true
spark.history.ui.port -> 18080
spark.rpc.askTimeout -> 800
…
§  Example command:
spark-submit --driver-memory 10g --verbose --master yarn --executor-memory ….
© 2017 IBM Corporation6
Missing external jars
§  Compiled OK, but run-time NoClassDefFoundError:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/kafka/clients/producer/KafkaProducer
at java.lang.Class.getDeclaredMethods0(Native Method)
at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
at java.lang.Class.privateGetMethodRecursive(Class.java:3048)
at java.lang.Class.getMethod0(Class.java:3018)
§  Use ‘--packages’ to include comma-separated list of Maven coordinates of JARs
§  Example
spark-submit --driver-memory 12g --verbose --master yarn-client --executor-memory 4096m --num-executors 20
--class com.ibm.biginsights.pqa.spark.SparkStreamingTest --packages org.apache.spark:spark-streaming-
kafka_2.10:1.5.1 …
§  This includes JARs on both driver and executor classpaths
§  Order of look-up
-  The local Maven repo – local machine
-  Maven central - Web
-  Additional remote repositories specified in –repositories
© 2017 IBM Corporation7
OutOfMemory related to Spark driver
§  Types of OOM related to Spark driver heap size
15/10/06 17:10:00 ERROR akka.ErrorMonitor: Uncaught fatal error from thread [sparkDriver-
akka.actor.default-dispatcher-29] shutting down ActorSystem [sparkDriver]
java.lang.OutOfMemoryError: Java heap space
Exception in thread "task-result-getter-0" java.lang.OutOfMemoryError: Java heap space
Subsequent error: Exception in thread "ResponseProcessor for block
BP-1697216913-9.30.104.154-1438974319723:blk_1073847224_106652" java.lang.OutOfMemoryError: Java heap
space
WARN nio.AbstractNioSelector: Unexpected exception in the selector loop.
java.lang.OutOfMemoryError: Java heap space at
org.jboss.netty.buffer.HeapChannelBuffer.<init>(HeapChannelBuffer.java:42)
§  Increase ‘--driver-memory’ usually resolves these
§  Default 512M is usually too small for serious workloads
§  Example: 8GB minimum needed for Spark SQL running TPCDS @ 1TB
§  Typical workloads that need large driver heap size
-  Spark SQL
-  Spark Streaming
© 2017 IBM Corporation8
OOM – GC overhead limit exceeded
15/12/09 19:57:02 WARN scheduler.TaskSetManager: Lost task 175.0 in stage 68.0 (TID 7588,
rhel8.cisco.com): java.lang.OutOfMemoryError: GC overhead limit exceeded
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:478)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:55)
§  Too much time is being spent in garbage collection (98% of the total time)
§  Less than 2% of the heap is recovered
§  From ‘top’, often see “1 CPU core fully used at 100%” but no work is done
§  Tuning #1: Increase executor heapsize
spark-submit … --executor-memory 4096m --num-executors 20 …
§  OR Tuning #2: Change GC policy (next slide)
© 2017 IBM Corporation9
GC policies
§  Choose between -XX:UseG1GC & -XX:UseParallelGC
§  Show current GC settings
% /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -XX:+PrintFlagsFinal
uintx GCHeapFreeLimit = 2 {product}
uintx GCLockerEdenExpansionPercent = 5 {product}
uintx GCLogFileSize = 8192 {product}
uintx GCTimeLimit = 98 {product}
uintx GCTimeRatio = 99 {product}
bool UseG1GC = false {product}
bool UseParallelGC := true {product}
§  Tuning options
-  Spark default is -XX:UseParallelGC
-  Try overwrite with –XX:G1GC
§  Performance Impact: “Mythical at best”, “It depends”
§  Default is pretty good!
§  Databricks blog on Tuning GC for Spark
-  https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark-
applications.html
© 2017 IBM Corporation10
Support JDBC Apps via Spark Thrift Server
§  Spark SQL can act as a distributed query engine using its JDBC/ODBC interface
§  Supported by running the Thrift JDBC/ODBC server
§  Has a single SparkContext with multiple sessions supporting
-  Concurrency
-  re-usable connections (pool)
-  Shared cache (e.g., catalog, tables, etc.)
§  Can specify any amount of memory, CPUs through standard Spark-submit parameters:
-  Driver-memory
-  Executor-memory
-  Num-executors, etc.
§  Example, to start Thrift Server with 2.3TB of memory, 800 cores and YARN mode:
% $SPARK_HOME/sbin/start-thriftserver.sh --driver-memory 12g --verbose --master yarn --executor-memory 16g
--num-executors 100 --executor-cores 8 --conf spark.hadoop.yarn.timeline-service.enabled=false --conf
spark.yarn.executor.memoryOverhead=8192 --conf spark.driver.maxResultSize=5g
§  Default number of workers (sessions) = 500
§  Client tool bundled with Spark 2.0: Beeline
% $SPARK_HOME/bin/beeline -u "jdbc:hive2://node460.xyz.com:10013/my1tbdb" -n spark --force=true -f /test/
query_00_01_96.sql
© 2017 IBM Corporation11
Not all CPUs are busy …
§  Designed for big data
§  More cores and more memory always better (well, until it breaks!)
§  Ways to max out your cluster, for example:
-  40 vCores per node
-  128GB memory per node
-  5-node cluster = 200 vCores, ~500GB RAM
§  Method #1 – Start with evenly divided memory and cores
--executor-memory 2500m --num-executors 200
Total # of executors = 200 (default: 1-core each)
# of executors/node = 40 (fully using all cores)
Total memory used = 500 GB
§  Method #2 – When heap size non-negotiable
--executor-memory 6g --num-executors 80
Total # of executors = 80 (1-core each)
# of executors/node = 16 (40% CPU utilization)
Total memory used ~= 500 GB
Can increase cores per executor as:
--executor-memory 6g --num-executors 80 –executor-cores 2
Forcing 80% utilization, boosting 33% performance!
© 2017 IBM Corporation12
Spread out Spark “scratch” space
§  Typical error
stage 89.3 failed 4 times, most recent failure:
Lost task 38.4 in stage 89.3 (TID 30100, rhel4.cisco.com): java.io.IOException: No space left on device
at java.io.FileOutputStream.writeBytes(Native Method)
at java.io.FileOutputStream.write(FileOutputStream.java:326)
at org.apache.spark.storage.TimeTrackingOutputStream.write(TimeTrackingOutputStream.java:58)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
§ 
Complains about ‘/tmp’ is full
§  Controlled by ‘spark.local.dir’ parameter
-  Default is ‘/tmp’
-  Stores map output files and RDDs
§  Two reasons ‘/tmp’ is not an ideal place for Spark “scratch” space
-  ‘/tmp’ usually is small and for OS
-  ‘/tmp’ usually is a single disk, a potential IO bottleneck
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.local.dir /data/disk1/tmp,/data/disk2/tmp,/data/disk3/tmp,/data/disk4/tmp,…
© 2017 IBM Corporation13
Max result size exceeded
§  Typical error
stream5/query_05_22_77.sql.out:Error: org.apache.spark.SparkException: Job aborted due to stage failure:
Total size of serialized results of 381610 tasks (5.0 GB) is bigger than spark.driver.maxResultSize (5.0
GB) (state=,code=0))
§  Likely to occur with complex SQL on large data volumes
§  Limit of total size of serialized results of all partitions for each Spark action (e.g., collect)
§  Controlled by ‘spark.driver.maxResultSize’ parameter
-  Default is 1G
-  Can be ‘0’ or ‘unlimited’
-  ‘unlimited’ will throw OOM on driver
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.driver.maxResultSize 5g
** 5G is a learned value for Spark SQL running TPCDS queries at 1TB scale factors
© 2017 IBM Corporation14
Catalyst errors
§  Typical error
stream7/query_07_24_48.sql.out:Error: org.apache.spark.sql.catalyst.errors.package$TreeNodeException:
execute, tree: at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute
$1.apply(ShuffleExchange.scala:122)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute
$1.apply(ShuffleExchange.scala:113)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
... 96 more
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [800 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:190)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190)
... 208 more
§  On surface appears to be Catalyst error (optimizer)
§  Actually an internal Spark timeout error most likely to occur under concurrency
java.util.concurrent.TimeoutException: Futures timed out after [800 seconds]
§  Controlled by an unpublished Spark setting ‘spark.sql.broadcastTimeout’ parameter
-  Default in source code shows 300 seconds
§  To fix, add the following line to ‘spark-defaults.conf’ file or as CLI --conf
spark.sql.broadcastTimeout 1200
**1200 is the longest running query in a SQL workload in our case.
© 2017 IBM Corporation15
Other timeouts
§  Typical errors
16/07/09 01:14:18 ERROR spark.ContextCleaner: Error cleaning broadcast 28267
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [800 seconds]. This timeout is
controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$
$createRpcTimeoutException(RpcTimeout.scala:48)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:143)
And timeout exceptions related to the following:
spark.core.connection.ack.wait.timeout
spark.akka.timeout
spark.storage.blockManagerSlaveTimeoutMs
spark.shuffle.io.connectionTimeout
spark.rpc.askTimeout
spark.rpc.lookupTimeout
§  Depending on system resource usage, any of the above can occur (e.g., no heartbeats)
§  You can tune each individual setting OR use an “umbrella” timeout setting
§  Controlled by ‘spark.network.timeout’ parameter
-  Default is 120 seconds
-  Overrides all above timeout values
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.network.timeout 700
© 2017 IBM Corporation16
Out of space on a few data nodes …
§  Unbalanced HDFS forces more IO over network
§  Run command ‘hdfs balancer’ to start rebalancing
§  dfs.datanode.balance.bandwidthPerSec
-  Default 6250000 or 6.25 MB/s network bandwidth
-  Increased to 6 GB/s on F1 to take advantage of fat pipe
§  dfs.datanode.balance.max.concurrent.moves
-  Default is undefined
-  Add this setting in hdfs-site
-  Set to 500 concurrent threads
-  Example shows 5.4 TB/hour balancing rate
16/10/05 10:17:24 INFO balancer.Balancer: 0 over-utilized: []
16/10/05 10:17:24 INFO balancer.Balancer: 0 underutilized: []
The cluster is balanced. Exiting...
Oct 5, 2016 10:17:24 AM         337   19.71 TB  0 B -1 B
Oct 5, 2016 10:17:24 AM  Balancing took 3.6939516666666665 hours
© 2017 IBM Corporation17
What block size to use in HDFS and in Parquet?
Take-away:
Keep block size for both at default (128MB)
Parquet Block
HDFS Block HDFS Block HDFS Block HDFS Block
Parquet Block Parquet Block
HDFS Block HDFS Block HDFS Block HDFS Block
Parquet Block Parquet Block Parquet Block Parquet Block
Remote reads occur when block boundaries cross
Slows down scan time
Prefer row group boundaries be at block boundaries
© 2017 IBM Corporation18
In-flight capturing of executor thread & heap dumps
§  Typically run as YARN containers across multiple nodes, e.g.,
yarn 355583 355580 91 09:15 ? 00:05:35 /usr/jdk64/java-1.8.0-
openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -server -XX:OnOutOfMemoryError=kill %p -Xms6144m -Xmx6144m -
Djava.io.tmpdir=/data6/hadoop/yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/
container_1452558922304_0075_01_000020/tmp -Dspark.driver.port=3110 -Dspark.history.ui.port=18080 -
Dspark.yarn.app.container.log.dir=/data1/hadoop/yarn/log/application_1452558922304_0075/
container_1452558922304_0075_01_000020 org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url
akka.tcp://sparkDriver@9.30.104.154:3110/user/CoarseGrainedScheduler --executor-id 19 –hostname
node133.yxz.com --cores 1 --app-id application_1452558922304_0075 --user-class-path file:/data6/hadoop/
yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/
container_1452558922304_0075_01_000020/__app__.jar
§  OpenJDK has a set of tools for Java thread and heap dumps
jmap, jstack, jstat, jhat, etc.
§  Typical location of OpenJDK tools for IBM Hadoop platform
/usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/
§  To get a full thread dump
% jstack –l 355583 > /TestAutomation/results/twitter/javacore.355583.1
% jstack –l –F 355583 > /TestAutomation/results/twitter/javacore-hung.355583.1
Use –F to attach to a non-responsive JVM
§  To get a full heap dump
% jmap -dump:live,format=b,file=/TestAutomation/results/dump.355583.2 355583
Dumping heap to /TestAutomation/results/sparkstreamtests/dump.355583.2 ...
Heap dump file created
© 2017 IBM Corporation19
Can’t find core dumps even when Spark says there are ….
§  Core dumps created by Spark jobs
16/11/14 16:45:05 WARN scheduler.TaskSetManager: Lost task 692.0 in stage 4.0 (TID 129021, node12.xyz.com,
executor 824): ExecutorLostFailure (executor 824 exited caused by one of the running tasks) Reason:
Container marked as failed: container_e69_1479156026828_0006_01_000825 on host: node12.xyz.com. Exit status:
134. Diagnostics: Exception from container-launch.
Exit code: 134
Container id: container_e69_1479156026828_0006_01_000825
Exception message: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/java-1.8.0-
openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/yarn/local/
….ontainer.log.dir=/data5/hadoop/…container_e69_1479156026828_0006_01_000825/com.univocity_univocity-
parsers-1.5.1.jar > /data5/hadoop/yarn/log/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/log/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/stderr
Stack trace: ExitCodeException exitCode=134: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/
java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/-…
container_e69_1479156026828_0006_01_000825/com.univocity_univocity-parsers-1.5.1.jar > /data5/hadoop/yarn/
log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/
log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stderr
§  YARN settings for core dump file retention
yarn.nodemanager.delete.debug-delay-sec default is 0, files deleted right after application finishes
Set it to enough time to get to files and copy them for debugging
§  Steps: 1. Find the hostname in the error log; 2. Find the local directory where ‘stderr’
resides; 3. Open the ‘stderr’, you will find lines similar to:
/data2/hadoop/yarn/local/usercache/spark/appcache/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/hs_err_pid3694385.log
§  and core dump files too!
§  More on this setting https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-common/yarn-
default.xml
1
2

More Related Content

PDF
Enabling Vectorized Engine in Apache Spark
PPTX
Using LLVM to accelerate processing of data in Apache Arrow
PDF
데브시스터즈 데이터 레이크 구축 이야기 : Data Lake architecture case study (박주홍 데이터 분석 및 인프라 팀...
PDF
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
PPTX
Processing Large Data with Apache Spark -- HasGeek
PPTX
Hive + Tez: A Performance Deep Dive
PDF
Parallelizing with Apache Spark in Unexpected Ways
PDF
[215] Druid로 쉽고 빠르게 데이터 분석하기
Enabling Vectorized Engine in Apache Spark
Using LLVM to accelerate processing of data in Apache Arrow
데브시스터즈 데이터 레이크 구축 이야기 : Data Lake architecture case study (박주홍 데이터 분석 및 인프라 팀...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Processing Large Data with Apache Spark -- HasGeek
Hive + Tez: A Performance Deep Dive
Parallelizing with Apache Spark in Unexpected Ways
[215] Druid로 쉽고 빠르게 데이터 분석하기

What's hot (20)

PDF
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유 (2부)
PDF
Dynamic Allocation in Spark
PDF
Apache Spark in Depth: Core Concepts, Architecture & Internals
PDF
Spark + S3 + R3를 이용한 데이터 분석 시스템 만들기
PDF
Introduction to MongoDB
PDF
Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
PDF
Introduction to Spark Internals
PDF
Introduction to apache spark
PPTX
E-commerce Product Rating
PPTX
Migrating your clusters and workloads from Hadoop 2 to Hadoop 3
PDF
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
PDF
Top 5 Mistakes When Writing Spark Applications
PDF
Introduction to Apache Spark
PPTX
Apache spark
PDF
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
PPTX
Demystifying flink memory allocation and tuning - Roshan Naik, Uber
PPTX
Introduction to Apache Spark
PDF
[236] 카카오의데이터파이프라인 윤도영
PDF
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
PDF
High-speed Database Throughput Using Apache Arrow Flight SQL
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유 (2부)
Dynamic Allocation in Spark
Apache Spark in Depth: Core Concepts, Architecture & Internals
Spark + S3 + R3를 이용한 데이터 분석 시스템 만들기
Introduction to MongoDB
Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
Introduction to Spark Internals
Introduction to apache spark
E-commerce Product Rating
Migrating your clusters and workloads from Hadoop 2 to Hadoop 3
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Top 5 Mistakes When Writing Spark Applications
Introduction to Apache Spark
Apache spark
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Demystifying flink memory allocation and tuning - Roshan Naik, Uber
Introduction to Apache Spark
[236] 카카오의데이터파이프라인 윤도영
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
High-speed Database Throughput Using Apache Arrow Flight SQL
Ad

Viewers also liked (20)

PDF
Why your Spark job is failing
PDF
Top 5 mistakes when writing Spark applications
PPTX
Extreme Apache Spark: how in 3 months we created a pipeline that can process ...
PPTX
Intro to Spark development
PDF
Advanced Data Science on Spark-(Reza Zadeh, Stanford)
PDF
Dev Ops Training
PDF
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
PDF
SQL to Hive Cheat Sheet
PDF
Dynamically Allocate Cluster Resources to your Spark Application
PDF
Spark on yarn
PDF
Spark Compute as a Service at Paypal with Prabhu Kasinathan
PDF
Productionizing Spark and the Spark Job Server
PPTX
Get most out of Spark on YARN
PPTX
Hadoop and Spark Analytics over Better Storage
PPTX
Producing Spark on YARN for ETL
PDF
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
PPT
SocSciBot(01 Mar2010) - Korean Manual
PPTX
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
PPTX
ETL with SPARK - First Spark London meetup
PPTX
Apache Spark Model Deployment
Why your Spark job is failing
Top 5 mistakes when writing Spark applications
Extreme Apache Spark: how in 3 months we created a pipeline that can process ...
Intro to Spark development
Advanced Data Science on Spark-(Reza Zadeh, Stanford)
Dev Ops Training
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
SQL to Hive Cheat Sheet
Dynamically Allocate Cluster Resources to your Spark Application
Spark on yarn
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Productionizing Spark and the Spark Job Server
Get most out of Spark on YARN
Hadoop and Spark Analytics over Better Storage
Producing Spark on YARN for ETL
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
SocSciBot(01 Mar2010) - Korean Manual
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
ETL with SPARK - First Spark London meetup
Apache Spark Model Deployment
Ad

Similar to Spark 2.x Troubleshooting Guide (20)

PPTX
Tuning tips for Apache Spark Jobs
PDF
Using apache spark for processing trillions of records each day at Datadog
PDF
Spark on YARN
PDF
10 things i wish i'd known before using spark in production
PDF
Apache Sparkにおけるメモリ - アプリケーションを落とさないメモリ設計手法 -
PDF
Understanding Memory Management In Spark For Fun And Profit
PDF
ContainerWorkloadwithSemeru.pdf
PDF
Salesforce at Stacki Atlanta Meetup February 2016
PPTX
Emr spark tuning demystified
PDF
infra-as-code
PDF
Oracle 11g R2 RAC setup on rhel 5.0
PDF
Running your Java EE 6 Applications in the Cloud
PPTX
Spark Tips & Tricks
PDF
Stage Level Scheduling Improving Big Data and AI Integration
PDF
Postgres the hardway
PDF
Deep Dive into GPU Support in Apache Spark 3.x
PDF
Spark summit2014 techtalk - testing spark
PDF
Spark Summit EU talk by Luca Canali
PDF
Running your Java EE 6 Apps in the Cloud - JavaOne India 2011
PDF
JavaOne India 2011 - Running your Java EE 6 Apps in the Cloud
Tuning tips for Apache Spark Jobs
Using apache spark for processing trillions of records each day at Datadog
Spark on YARN
10 things i wish i'd known before using spark in production
Apache Sparkにおけるメモリ - アプリケーションを落とさないメモリ設計手法 -
Understanding Memory Management In Spark For Fun And Profit
ContainerWorkloadwithSemeru.pdf
Salesforce at Stacki Atlanta Meetup February 2016
Emr spark tuning demystified
infra-as-code
Oracle 11g R2 RAC setup on rhel 5.0
Running your Java EE 6 Applications in the Cloud
Spark Tips & Tricks
Stage Level Scheduling Improving Big Data and AI Integration
Postgres the hardway
Deep Dive into GPU Support in Apache Spark 3.x
Spark summit2014 techtalk - testing spark
Spark Summit EU talk by Luca Canali
Running your Java EE 6 Apps in the Cloud - JavaOne India 2011
JavaOne India 2011 - Running your Java EE 6 Apps in the Cloud

Recently uploaded (20)

PPTX
How to use fields_get method in Odoo 18
PDF
Child-friendly e-learning for artificial intelligence education in Indonesia:...
PPTX
Build automations faster and more reliably with UiPath ScreenPlay
PPTX
AQUEEL MUSHTAQUE FAKIH COMPUTER CENTER .
PDF
Domain-specific knowledge and context in large language models: challenges, c...
PPTX
Report in SIP_Distance_Learning_Technology_Impact.pptx
PDF
Human Computer Interaction Miterm Lesson
PDF
GDG Cloud Southlake #45: Patrick Debois: The Impact of GenAI on Development a...
PDF
Streamline Vulnerability Management From Minimal Images to SBOMs
PPTX
Slides World Game (s) Great Redesign Eco Economic Epochs.pptx
PDF
TicketRoot: Event Tech Solutions Deck 2025
PDF
State of AI in Business 2025 - MIT NANDA
PDF
Altius execution marketplace concept.pdf
PDF
Chapter 1: computer maintenance and troubleshooting
PPTX
CRM(Customer Relationship Managmnet) Presentation
PDF
ELLIE29.pdfWETWETAWTAWETAETAETERTRTERTER
PDF
“Introduction to Designing with AI Agents,” a Presentation from Amazon Web Se...
PDF
Decision Optimization - From Theory to Practice
PDF
Secure Java Applications against Quantum Threats
PDF
Examining Bias in AI Generated News Content.pdf
How to use fields_get method in Odoo 18
Child-friendly e-learning for artificial intelligence education in Indonesia:...
Build automations faster and more reliably with UiPath ScreenPlay
AQUEEL MUSHTAQUE FAKIH COMPUTER CENTER .
Domain-specific knowledge and context in large language models: challenges, c...
Report in SIP_Distance_Learning_Technology_Impact.pptx
Human Computer Interaction Miterm Lesson
GDG Cloud Southlake #45: Patrick Debois: The Impact of GenAI on Development a...
Streamline Vulnerability Management From Minimal Images to SBOMs
Slides World Game (s) Great Redesign Eco Economic Epochs.pptx
TicketRoot: Event Tech Solutions Deck 2025
State of AI in Business 2025 - MIT NANDA
Altius execution marketplace concept.pdf
Chapter 1: computer maintenance and troubleshooting
CRM(Customer Relationship Managmnet) Presentation
ELLIE29.pdfWETWETAWTAWETAETAETERTRTERTER
“Introduction to Designing with AI Agents,” a Presentation from Amazon Web Se...
Decision Optimization - From Theory to Practice
Secure Java Applications against Quantum Threats
Examining Bias in AI Generated News Content.pdf

Spark 2.x Troubleshooting Guide

  • 1. © 2017 IBM Corporation Spark 2.x Troubleshooting Guide IBM Big Data Performance Jesse Chen, [email protected] 3/2017
  • 2. © 2017 IBM Corporation2 Troubleshooting Spark 2.x §  Building Spark §  Running Spark -  ‘--verbose’ -  Missing external JARs -  OOM on Spark driver -  OOM on executors -  GC policies -  Spark Thrift Server for JDBC apps -  HDFS block distribution -  HDFS blocksize vs Parquet blocksize §  Profiling Spark -  Collecting thread & heap dumps in-flight -  Collecting core dumps after jobs fail
  • 3. © 2017 IBM Corporation3 Lots of errors when building a new Spark release on my own… §  Run ‘make-distribution.sh’ (generates ‘bin/spark-shell’, ‘bin/spark-submit’, etc.) §  Does not always work -  Wrong JRE version or no JRE found -  No Maven installed -  Support for certain components not default, e.g., ‘hive’ support §  TIP #1: Always explicitly set the following in ‘.bashrc’ for ‘root’ # for Spark distribution compiling export JAVA_HOME=/usr/jdk64/java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64 export JRE_HOME=$JAVA_HOME/jre export PATH=$JAVA_HOME/bin:$PATH export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH #set maven environment M2_HOME=/TestAutomation/downloads/tmp/spark-master/build/apache-maven-3.3.9 export MAVEN_OPTS="-Xms256m -Xmx2048m -XX:MaxPermSize=512m" export PATH=$M2_HOME/bin:$PATH §  TIP #2: Specify support you want explicitly -  To build Spark with YARN and Hive support, do: ./dev/make-distribution.sh --name spark-master-2.1 --tgz -Pyarn -Phadoop-2.7 - Dhadoop.version=2.7.2 -Phive -Phive-thriftserver
  • 4. © 2017 IBM Corporation4 Building a Spark release is extremely slow … §  Use more cores to speed up the build process (default uses only 1 core) §  Rebuild only modified source code (default is “clean”) Edit the file ‘./dev/make-distribution.sh’, change line BUILD_COMMAND=("$MVN" –T 1C clean package -DskipTests $@) To: BUILD_COMMAND=("$MVN" -T 48C package -DskipTests $@) ** Assuming your have 48 cores on your build machine ** Assuming you don’t need to always build clean, for iterative changes §  Can cut build time from 45 min to 15 min on a typical 128GB-RAM 48-core node
  • 5. © 2017 IBM Corporation5 Don’t know what settings used when running Spark … §  Always use ‘–-verbose’ option on ‘spark-submit’ command to run your workload §  Prints -  All default properties -  Command line options -  Settings from spark ‘conf’ file -  Settings from CLI §  Example output Spark properties used, including those specified through --conf and those from the properties file /TestAutomation/spark-2.0/conf/spark-defaults.conf: spark.yarn.queue -> default spark.local.dir -> /data1/tmp,/data2/tmp,/data3/tmp,/data4/tmp spark.history.kerberos.principal -> none spark.sql.broadcastTimeout -> 800 spark.hadoop.yarn.timeline-service.enabled -> false spark.yarn.max.executor.failures -> 3 spark.driver.memory -> 10g spark.network.timeout -> 800 spark.yarn.historyServer.address -> node458.xyz.com:18080 spark.eventLog.enabled -> true spark.history.ui.port -> 18080 spark.rpc.askTimeout -> 800 … §  Example command: spark-submit --driver-memory 10g --verbose --master yarn --executor-memory ….
  • 6. © 2017 IBM Corporation6 Missing external jars §  Compiled OK, but run-time NoClassDefFoundError: Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/kafka/clients/producer/KafkaProducer at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2701) at java.lang.Class.privateGetMethodRecursive(Class.java:3048) at java.lang.Class.getMethod0(Class.java:3018) §  Use ‘--packages’ to include comma-separated list of Maven coordinates of JARs §  Example spark-submit --driver-memory 12g --verbose --master yarn-client --executor-memory 4096m --num-executors 20 --class com.ibm.biginsights.pqa.spark.SparkStreamingTest --packages org.apache.spark:spark-streaming- kafka_2.10:1.5.1 … §  This includes JARs on both driver and executor classpaths §  Order of look-up -  The local Maven repo – local machine -  Maven central - Web -  Additional remote repositories specified in –repositories
  • 7. © 2017 IBM Corporation7 OutOfMemory related to Spark driver §  Types of OOM related to Spark driver heap size 15/10/06 17:10:00 ERROR akka.ErrorMonitor: Uncaught fatal error from thread [sparkDriver- akka.actor.default-dispatcher-29] shutting down ActorSystem [sparkDriver] java.lang.OutOfMemoryError: Java heap space Exception in thread "task-result-getter-0" java.lang.OutOfMemoryError: Java heap space Subsequent error: Exception in thread "ResponseProcessor for block BP-1697216913-9.30.104.154-1438974319723:blk_1073847224_106652" java.lang.OutOfMemoryError: Java heap space WARN nio.AbstractNioSelector: Unexpected exception in the selector loop. java.lang.OutOfMemoryError: Java heap space at org.jboss.netty.buffer.HeapChannelBuffer.<init>(HeapChannelBuffer.java:42) §  Increase ‘--driver-memory’ usually resolves these §  Default 512M is usually too small for serious workloads §  Example: 8GB minimum needed for Spark SQL running TPCDS @ 1TB §  Typical workloads that need large driver heap size -  Spark SQL -  Spark Streaming
  • 8. © 2017 IBM Corporation8 OOM – GC overhead limit exceeded 15/12/09 19:57:02 WARN scheduler.TaskSetManager: Lost task 175.0 in stage 68.0 (TID 7588, rhel8.cisco.com): java.lang.OutOfMemoryError: GC overhead limit exceeded at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:478) at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:55) §  Too much time is being spent in garbage collection (98% of the total time) §  Less than 2% of the heap is recovered §  From ‘top’, often see “1 CPU core fully used at 100%” but no work is done §  Tuning #1: Increase executor heapsize spark-submit … --executor-memory 4096m --num-executors 20 … §  OR Tuning #2: Change GC policy (next slide)
  • 9. © 2017 IBM Corporation9 GC policies §  Choose between -XX:UseG1GC & -XX:UseParallelGC §  Show current GC settings % /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -XX:+PrintFlagsFinal uintx GCHeapFreeLimit = 2 {product} uintx GCLockerEdenExpansionPercent = 5 {product} uintx GCLogFileSize = 8192 {product} uintx GCTimeLimit = 98 {product} uintx GCTimeRatio = 99 {product} bool UseG1GC = false {product} bool UseParallelGC := true {product} §  Tuning options -  Spark default is -XX:UseParallelGC -  Try overwrite with –XX:G1GC §  Performance Impact: “Mythical at best”, “It depends” §  Default is pretty good! §  Databricks blog on Tuning GC for Spark -  https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark- applications.html
  • 10. © 2017 IBM Corporation10 Support JDBC Apps via Spark Thrift Server §  Spark SQL can act as a distributed query engine using its JDBC/ODBC interface §  Supported by running the Thrift JDBC/ODBC server §  Has a single SparkContext with multiple sessions supporting -  Concurrency -  re-usable connections (pool) -  Shared cache (e.g., catalog, tables, etc.) §  Can specify any amount of memory, CPUs through standard Spark-submit parameters: -  Driver-memory -  Executor-memory -  Num-executors, etc. §  Example, to start Thrift Server with 2.3TB of memory, 800 cores and YARN mode: % $SPARK_HOME/sbin/start-thriftserver.sh --driver-memory 12g --verbose --master yarn --executor-memory 16g --num-executors 100 --executor-cores 8 --conf spark.hadoop.yarn.timeline-service.enabled=false --conf spark.yarn.executor.memoryOverhead=8192 --conf spark.driver.maxResultSize=5g §  Default number of workers (sessions) = 500 §  Client tool bundled with Spark 2.0: Beeline % $SPARK_HOME/bin/beeline -u "jdbc:hive2://node460.xyz.com:10013/my1tbdb" -n spark --force=true -f /test/ query_00_01_96.sql
  • 11. © 2017 IBM Corporation11 Not all CPUs are busy … §  Designed for big data §  More cores and more memory always better (well, until it breaks!) §  Ways to max out your cluster, for example: -  40 vCores per node -  128GB memory per node -  5-node cluster = 200 vCores, ~500GB RAM §  Method #1 – Start with evenly divided memory and cores --executor-memory 2500m --num-executors 200 Total # of executors = 200 (default: 1-core each) # of executors/node = 40 (fully using all cores) Total memory used = 500 GB §  Method #2 – When heap size non-negotiable --executor-memory 6g --num-executors 80 Total # of executors = 80 (1-core each) # of executors/node = 16 (40% CPU utilization) Total memory used ~= 500 GB Can increase cores per executor as: --executor-memory 6g --num-executors 80 –executor-cores 2 Forcing 80% utilization, boosting 33% performance!
  • 12. © 2017 IBM Corporation12 Spread out Spark “scratch” space §  Typical error stage 89.3 failed 4 times, most recent failure: Lost task 38.4 in stage 89.3 (TID 30100, rhel4.cisco.com): java.io.IOException: No space left on device at java.io.FileOutputStream.writeBytes(Native Method) at java.io.FileOutputStream.write(FileOutputStream.java:326) at org.apache.spark.storage.TimeTrackingOutputStream.write(TimeTrackingOutputStream.java:58) at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82) at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126) §  Complains about ‘/tmp’ is full §  Controlled by ‘spark.local.dir’ parameter -  Default is ‘/tmp’ -  Stores map output files and RDDs §  Two reasons ‘/tmp’ is not an ideal place for Spark “scratch” space -  ‘/tmp’ usually is small and for OS -  ‘/tmp’ usually is a single disk, a potential IO bottleneck §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.local.dir /data/disk1/tmp,/data/disk2/tmp,/data/disk3/tmp,/data/disk4/tmp,…
  • 13. © 2017 IBM Corporation13 Max result size exceeded §  Typical error stream5/query_05_22_77.sql.out:Error: org.apache.spark.SparkException: Job aborted due to stage failure: Total size of serialized results of 381610 tasks (5.0 GB) is bigger than spark.driver.maxResultSize (5.0 GB) (state=,code=0)) §  Likely to occur with complex SQL on large data volumes §  Limit of total size of serialized results of all partitions for each Spark action (e.g., collect) §  Controlled by ‘spark.driver.maxResultSize’ parameter -  Default is 1G -  Can be ‘0’ or ‘unlimited’ -  ‘unlimited’ will throw OOM on driver §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.driver.maxResultSize 5g ** 5G is a learned value for Spark SQL running TPCDS queries at 1TB scale factors
  • 14. © 2017 IBM Corporation14 Catalyst errors §  Typical error stream7/query_07_24_48.sql.out:Error: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree: at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute $1.apply(ShuffleExchange.scala:122) at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute $1.apply(ShuffleExchange.scala:113) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49) ... 96 more Caused by: java.util.concurrent.TimeoutException: Futures timed out after [800 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:190) at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190) ... 208 more §  On surface appears to be Catalyst error (optimizer) §  Actually an internal Spark timeout error most likely to occur under concurrency java.util.concurrent.TimeoutException: Futures timed out after [800 seconds] §  Controlled by an unpublished Spark setting ‘spark.sql.broadcastTimeout’ parameter -  Default in source code shows 300 seconds §  To fix, add the following line to ‘spark-defaults.conf’ file or as CLI --conf spark.sql.broadcastTimeout 1200 **1200 is the longest running query in a SQL workload in our case.
  • 15. © 2017 IBM Corporation15 Other timeouts §  Typical errors 16/07/09 01:14:18 ERROR spark.ContextCleaner: Error cleaning broadcast 28267 org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [800 seconds]. This timeout is controlled by spark.rpc.askTimeout at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$ $createRpcTimeoutException(RpcTimeout.scala:48) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83) at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:143) And timeout exceptions related to the following: spark.core.connection.ack.wait.timeout spark.akka.timeout spark.storage.blockManagerSlaveTimeoutMs spark.shuffle.io.connectionTimeout spark.rpc.askTimeout spark.rpc.lookupTimeout §  Depending on system resource usage, any of the above can occur (e.g., no heartbeats) §  You can tune each individual setting OR use an “umbrella” timeout setting §  Controlled by ‘spark.network.timeout’ parameter -  Default is 120 seconds -  Overrides all above timeout values §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.network.timeout 700
  • 16. © 2017 IBM Corporation16 Out of space on a few data nodes … §  Unbalanced HDFS forces more IO over network §  Run command ‘hdfs balancer’ to start rebalancing §  dfs.datanode.balance.bandwidthPerSec -  Default 6250000 or 6.25 MB/s network bandwidth -  Increased to 6 GB/s on F1 to take advantage of fat pipe §  dfs.datanode.balance.max.concurrent.moves -  Default is undefined -  Add this setting in hdfs-site -  Set to 500 concurrent threads -  Example shows 5.4 TB/hour balancing rate 16/10/05 10:17:24 INFO balancer.Balancer: 0 over-utilized: [] 16/10/05 10:17:24 INFO balancer.Balancer: 0 underutilized: [] The cluster is balanced. Exiting... Oct 5, 2016 10:17:24 AM         337   19.71 TB  0 B -1 B Oct 5, 2016 10:17:24 AM  Balancing took 3.6939516666666665 hours
  • 17. © 2017 IBM Corporation17 What block size to use in HDFS and in Parquet? Take-away: Keep block size for both at default (128MB) Parquet Block HDFS Block HDFS Block HDFS Block HDFS Block Parquet Block Parquet Block HDFS Block HDFS Block HDFS Block HDFS Block Parquet Block Parquet Block Parquet Block Parquet Block Remote reads occur when block boundaries cross Slows down scan time Prefer row group boundaries be at block boundaries
  • 18. © 2017 IBM Corporation18 In-flight capturing of executor thread & heap dumps §  Typically run as YARN containers across multiple nodes, e.g., yarn 355583 355580 91 09:15 ? 00:05:35 /usr/jdk64/java-1.8.0- openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -server -XX:OnOutOfMemoryError=kill %p -Xms6144m -Xmx6144m - Djava.io.tmpdir=/data6/hadoop/yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/ container_1452558922304_0075_01_000020/tmp -Dspark.driver.port=3110 -Dspark.history.ui.port=18080 - Dspark.yarn.app.container.log.dir=/data1/hadoop/yarn/log/application_1452558922304_0075/ container_1452558922304_0075_01_000020 org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url akka.tcp://[email protected]:3110/user/CoarseGrainedScheduler --executor-id 19 –hostname node133.yxz.com --cores 1 --app-id application_1452558922304_0075 --user-class-path file:/data6/hadoop/ yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/ container_1452558922304_0075_01_000020/__app__.jar §  OpenJDK has a set of tools for Java thread and heap dumps jmap, jstack, jstat, jhat, etc. §  Typical location of OpenJDK tools for IBM Hadoop platform /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/ §  To get a full thread dump % jstack –l 355583 > /TestAutomation/results/twitter/javacore.355583.1 % jstack –l –F 355583 > /TestAutomation/results/twitter/javacore-hung.355583.1 Use –F to attach to a non-responsive JVM §  To get a full heap dump % jmap -dump:live,format=b,file=/TestAutomation/results/dump.355583.2 355583 Dumping heap to /TestAutomation/results/sparkstreamtests/dump.355583.2 ... Heap dump file created
  • 19. © 2017 IBM Corporation19 Can’t find core dumps even when Spark says there are …. §  Core dumps created by Spark jobs 16/11/14 16:45:05 WARN scheduler.TaskSetManager: Lost task 692.0 in stage 4.0 (TID 129021, node12.xyz.com, executor 824): ExecutorLostFailure (executor 824 exited caused by one of the running tasks) Reason: Container marked as failed: container_e69_1479156026828_0006_01_000825 on host: node12.xyz.com. Exit status: 134. Diagnostics: Exception from container-launch. Exit code: 134 Container id: container_e69_1479156026828_0006_01_000825 Exception message: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/java-1.8.0- openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/yarn/local/ ….ontainer.log.dir=/data5/hadoop/…container_e69_1479156026828_0006_01_000825/com.univocity_univocity- parsers-1.5.1.jar > /data5/hadoop/yarn/log/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/log/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/stderr Stack trace: ExitCodeException exitCode=134: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/ java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/-… container_e69_1479156026828_0006_01_000825/com.univocity_univocity-parsers-1.5.1.jar > /data5/hadoop/yarn/ log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/ log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stderr §  YARN settings for core dump file retention yarn.nodemanager.delete.debug-delay-sec default is 0, files deleted right after application finishes Set it to enough time to get to files and copy them for debugging §  Steps: 1. Find the hostname in the error log; 2. Find the local directory where ‘stderr’ resides; 3. Open the ‘stderr’, you will find lines similar to: /data2/hadoop/yarn/local/usercache/spark/appcache/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/hs_err_pid3694385.log §  and core dump files too! §  More on this setting https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-common/yarn- default.xml 1 2