
Towards an O(1) VM:
Making Linux virtual memory management scale towards large amounts of physical memory

Rik van Riel
Red Hat Inc.

riel@surriel.com

Abstract

Linux 2.4 and 2.5 already scale fairly well
towards many CPUs, large numbers of files,
large numbers of network connections and sev-
eral "other kinds of big". However, the VM
still has a few places with poor worst case (or
even average case) behavior that needs to be
improved in order to make Linux work well on
machines with many gigabytes of RAM.

1 Introduction

In this paper I will explore the problem spaces
and algorithmic complexities of the virtual
memory subsystem. This paper will focus
mostly on the page replacement code, which by
definition has all of physical memory and parts
of virtual memory as its search space. The fol-
lowing aspects of page replacement will be dis-
cussed:

• Page launder, the reclaiming of pages that
are selected for pageout.

• Page aging, how to select which pages to
evict.

• Balancing filesystem cache vs. anony-
mous memory.

• Reverse mapping, pte based vs. object
based.

2 Page launder

Traditionally the virtual memory management
subsystems in Unix and Linux systems have
had either a clock algorithm or Mach-style ac-
tive and inactive lists to do both LRU aging and
eviction of pages. Linux 2.4 and 2.5 have what
amounts to simple Mach-style active and in-
active lists (Figure 1), at least when it comes
to the writeout and reclaiming of pages that
aren’t mapped in processes. In this paper, the
Mach VM pageout algorithm is used as an ex-
ample because it is a decent approximation of
what the different Linux VMs have done and
the Mach VM is quite possibly the best docu-
mented virtual memory subsystem.

In the Mach VM pages get recycled once they
reach the end of the inactive list and are clean,
meaning they do not need to be written to disk.
If the page needs to be written to disk, a so-
called dirty page, disk IO is started and the
page is moved to the beginning of the inactive
list. Presumably the disk IO will have finished



and the page will be clean by the time it gets to
the end of the inactive list again.

Inactive

Active

Free

Referenced

 

Allocations

Allocations

Not
Referenced
Dirty
Disk IO started

Not
Referenced
Clean

Inactive shortage
Moved on

Figure 1: Mach pageout lists

This organisation works reasonably well when
dealing with filesystem cache pages, since
those are usually clean pages which can be re-
claimed the moment they reach the end of the
inactive list. However, when the filesystem
cache is small and the system is dealing mostly
with dirty, swap or mmap backed pages from
processes, this strategy has a big drawback on
modern, large memory computers.

2.1 The problem with Mach-style page laun-
dering

Memory used by processes is often dirty,
meaning it needs to be written back to disk.
The problem with this becomes obvious when

we look at exactly what happens when all of
the pages on the inactive list are dirty:

• The pageout code encounters a dirty page.

• Disk IO is started, the page is written to
disk.

• The page is moved to the far end of the
inactive list.

• The page reclaiming code encounters the
next dirty page, starts writeout, etc...

• Since only a finite number of disk IO op-
erations can be underway at any time, the
page reclaiming code needs to wait for
current IO operations to finish once it has
started writeout on a certain number of
pages.

• IO on the pages that were written out first
finishes, meaning the pages are now clean
and reclaimable.

• The page reclaiming code continues with
the write out of the other dirty pages on
the inactive list.

Of course, this has a number of serious draw-
backs. The most obvious one is that on large
memory systems the system will wait for most
pageout IO to have finished before it can even
start the last IO. Worse yet, it won’t be able to
free a page before all IO has been submitted.

In the early 1990s, when the Mach VM was
popular, systems had up to a few megabytes
of memory, with maybe a few hundred kilo-
bytes of inactive pages, which could be written
to disk in one or at most a few seconds. Mod-
ern systems, on the other hand, often have mul-
tiple gigabytes of memory. Since the speed of
hard disks hasn’t increased nearly as much as
the size of memory, the time needed to write
out all of the inactive list can be unacceptably
high, up to dozens of seconds.



2.2 Solutions

One obvious solution is to only write out part
of the pages on the inactive list. After all, if the
system needs to free ten megabytes of memory,
there is little reason to write out one gigabyte of
data. The implementation of this solution is a
little less obvious, since there are various ways
to approach this goal and there is a tradeoff to
make between CPU usage and page freeing la-
tency.

The first solution would be to simply write out
a limited number of pages and skip the dirty
pages on the list, scanning the list like usual
and freeing all the clean pages encountered. In
situations where the inactive list has both clean
and dirty pages this tactic will allow you to al-
ways free the clean pages, reaching your free
target and allowing allocations to go on with as
little latency as possible. Of course, if the list
only has dirty pages, then the system could end
up spending a lot of CPU time scanning the list
over and over again.

For the rmap VM a different, hopefully more
predictable and CPU friendly solution (Figure
2) has been chosen. Instead of just one inac-
tive list, there are various lists for the different
stages of the pageout process a page can be in.
Initially all rarely used pages are placed on the
inactive_dirty list, regardless of whether or not
they need to be written back to disk.

When a page reaches the end of the inac-
tive_dirty list and wasn’t referenced, the VM
will move it to the inactive_laundry list, start-
ing disk IO if the page was dirty. Referenced
pages get moved back to the active list.

On the other end of the inactive_laundry list the
VM removes clean pages, until the system has
enough immediately freeable and free pages.
Referenced pages are moved back to the active

list; cleaned pages are moved on to the inac-
tive_clean list, from where they can be imme-
diately reused by the page allocation code.

The inactive_clean list is just an extension of
the free page list. It contains clean pages that
were not referenced and can be immediately re-
claimed by the page allocation code. The rea-
son for having an inactive_clean list is that the
free page list in a VM is never the right size.
The list should be as large as possible in or-
der to be able to satisfy allocations with low la-
tency, but at the same time the list should be as
small as possible so almost all of memory can
be used for processes and the cache. Having a
list of immediately reclaimable pages with use-
ful data in them avoids most of this dilemma.

 

Free

Inactive

Inactive

Inactive

Active

Laundry

Clean

Dirty

Not
Referenced
Clean

Not
Referenced
Disk IO started
(if needed)

Referenced
Not

Referenced

Allocations

Referenced
Not

Free shortage

Allocations

Figure 2: O(1) page launder



3 Page aging

Since the performance penalty of evicting the
wrong page from memory is so high, due to the
enormous speed differential between memory
and disk, any virtual memory subsystem needs
to take great care in selecting which pages to
evict and which pages to keep in memory. On
the other hand, on systems with more than a
few megabytes of memory you do not want to
scan all the active pages every time the system
is short on inactive memory.

While it is impossible to ensure this situation
will never happen, because some applications
just have access patterns you cannot tune a
page replacement algorithm for, we can im-
prove the situation a lot by pre-sorting the ac-
tive pages in various lists (Figure 3), according
to activity.

The pageout code will only look at the pages
that most likely aren’t very active, meaning it
has a better chance of finding the proper pages
for eviction without needing to resort to a full
scan of memory. If the list with least used
pages is empty, the pageout code simply shifts
down all of the active lists and starts looking at
the pages that came from the next list up.

The page aging (sorting) code scans the ac-
tive lists periodically and moves the pages that
were accessed to higher lists. It only needs
to age pages upwards, because the downwards
movement is done by the pageout code shift-
ing down whole lists at a time. The period with
which the page aging code scans the active lists
is varied in reaction to the amount of pageout
activity. Ideally the system would do a sim-
ilar number of up aging scans as the number
of times it shifts down active lists. The scan
interval of the up aging code is reduced if the
VM did too many down shifting of active pages
and increased if the VM was quiet in-between

two aging scans. The page aging interval has
both a lower and an upper bound, to keep the
overhead under control and to have some back-
ground aging in an otherwise idle system. The
only time the page aging doesn’t run is when
there are more active pages on the higher lists
than on the lower lists.

Active 0

Active N−1

Inactive
Dirty

at a time
whole lists
Shifts down
Pageout

referenced
individual
Moves up

Page aging

pages

referenced
Pages, notReferenced

pages

Figure 3: Multi list page aging

4 Balancing cache vs program
memory

LRU style page replacement algorithms have
well-documented, known problems. There are
several replacement algorithms available that
improve the replacement of pages within one
set of data, eg EELRU, SEQ and LRFU, how-
ever none of these address the problem of bal-
ancing replacement between various sets of
data. Since all currently implemented page re-
placement algorithms for Linux have this prob-
lem, the replacement algorithm needs some
help balancing the file cache with memory used
for programs.

The rmap VM borrows a common trick from



other systems here. There are separate ac-
tive lists for file cache memory and program
memory, active_cache and active_anon, re-
spectively. While the cache is larger than a
certain percentage of active memory only the
cache pages are a candidate for pageout, this
value is the so-called borrow percentage and
is 15 by default. Below the borrow percent-
age the VM will move both cache pages and
pages belonging to processes to the inactive
list, reclaiming the pages that haven’t been ref-
erenced again by the time they reach the far end
of the inactive list. This gives cache and pro-
cesses a chance to balance against each other
by referencing pages. If the cache takes less
than a predetermined minimum of the active
list, 1 percent by default, the VM will only re-
claim pages from processes.

The deeper reasons behind the need for these
balancing hints are a little more complex than
the reasons behind other design choices in the
VM. One of the factors is that the amount
of data on the filesystems tends to be several
magnitudes larger than the amount of mem-
ory taken by the processes in the system. This
means that the number of accesses to pages
from the file cache could overwhelm the to-
tal number of accesses to the pages of the pro-
cesses, even though the individual pages of the
processes get accessed more frequently than
most file cache pages. In other words, the sys-
tem can end up evicting frequently accessed
pages from memory in favor of a mass of re-
cently but far less frequently accessed pages.

A replacement algorithm like LIRS, Low Inter-
reference Recency Set, would probably do
the right thing since it replaces pages with
a higher interval between references before
pages that have a lower interval between ref-
erences. However, for LIRS to work properly
the VM would need to keep track of pages that
have already been evicted from memory. Since
Linux does not have an infrastructure to keep

track of those, the rmap VM uses an LRFU
style page replacement algorithm with cache
size hints.

Even if the direct value of LIRS over
LRU/LFU for use as a primary cache wouldn’t
be big enough to offset the overhead of the
needed infrastructure, the facts that LIRS
would make the file cache vs process mem-
ory balancing automatic and that LIRS would
also do the right thing as a second level cache
(eg. an NFS server, page cache on a web proxy
where squid itself has the first level cache)
make the implementation of LIRS for Linux a
promising future experiment.

5 Reverse mapping

Reverse mappings provide an inverse to the
page tables of the processes; that is, they keep
track of which processes are using the physi-
cal pages, at which virtual addresses. Using
reverse mappings the pageout code can:

• Unmap a page from all processes using
it, without needing to search the virtual
memory of all processes.

• Unmap only those pages it really wants to
evict, instead of scanning the virtual mem-
ory of all processes and unmapping more
pages than it wants to evict in order to be
on the safe side. This could reduce the
number of minor page faults.

• Evict pages in a certain physical address
range, which is useful since Linux divides
physical memory in various zones.

• Scan only the virtual mappings of known
inactive pages, which means the pageout
code has a smaller search space in virtual



memory. Combined with smarter page ag-
ing and page laundering this results in a
smaller overall search space for the page-
out code.

5.1 Page based vs object based

Ther are pros and cons to doing reverse map-
ping on a per page or a per object basis. Re-
verse mapping on a per page basis is more ef-
ficient for the pageout code, but the reverse
mapping code affects more than just the page-
out code path. The page fault, fork, exit and
mmap paths all modify the reverse mappings,
so doing reverse mappings on objects larger
than a page (like a vma) would reduce the re-
verse mapping overhead in those code paths, at
the cost of the pageout code needing to search
more space.

The big question here is how much the
overhead and algorithmic complexities would
change, especially under larger workloads. A
quadratic increase in complexity in the pageout
path is almost certainly more expensive than
what could be offset by a linear speedup in the
other code paths, even though the pageout path
is rarely run.

Large workloads, with many gigabytes of
memory and hundreds or thousands of large,
active processes are certainly able to bring out
the worst of any VM; with the current imple-
mentations it doesn’t even matter which style
of reverse mapping is used. Bad behaviour can
be triggered in either case.

It appears that for both object based and page
based reverse mappings Linux is in need of
smarter data structures, that aren’t suscepti-
ble to quadratic algorithmic complexities any-
where. Once those are written we will be able
to make a proper comparison between both

methods of reverse mapping. It is conceiv-
able that Linux would end up using a hybrid of
object based and page based reverse mapping,
with each type being used where it is most ap-
propriate.

6 Conclusions

Linux memory management has come a long
way in the last few years, but at the same time
users have deployed Linux in more and more
demanding environments. In fact, demand al-
ways seems to be one step ahead of whatever
stage kernel development is at.

Users have shown beyond any doubt that there
are legitimate workloads that bring out the
worst case behaviour in any VM; because of
this there is a constant need to bring the al-
gorithmic complexity of any part of the vir-
tual memory management subsystem closer to
the holy grail of constant-time, or O(1) com-
plexity. The author expects development of
the Linux virtual management subsystem to re-
main challenging for years to come.

7 References

Draves, Richard P.Page Replacement and Ref-
erence Bit Emulation in Mach.In Proceedings
of the USENIX Mach Symposium, Monterey,
CA, November 1991.

Y. Smaragdakis, S. Kaplan, and P. Wilson,
EELRU: Simple and Effective Adaptive Page
Replacementin Proceeding of the 1999 ACM
SIGMETRICS Conference, 1999.

Gideon Glass and Pei Cao.Adaptive Page Re-
placement Based on Memory Reference Behav-



ior. In Proceedings of ACM SIGMETRICS
1997, June, 1997.

D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L.
Min, Y. Cho, and C. S. Kim,LRFU: A spec-
trum of policies that subsumes the least re-
cently used and least frequently used policies
IEEE Trans. Computers, vol. 50, no. 12, pp.
1352–1360, 2001.

S. Jiang and X. Zhuang.LIRS: An efficient low
inter-reference recency set replacement policy
to improve buffer cache performance.In Proc.
of SIGMETRICS 2002.


