
AONT-RS:
Blending Security and Performance in Dispersed Storage Systems

Jason K. Resch
Development
Cleversafe, Inc.

222 S. Riverside Plaza, Suite 1700
Chicago, IL 60606

jresch@cleversafe.com

James S. Plank
EECS Department

University of Tennessee
203 Claxton Complex
Knoxville, TN 37996
plank@cs.utk.edu

Abstract
Dispersing files across multiple sites yields a variety of
obvious benefits, such as availability, proximity and reli-
ability. Less obviously, it enables security to be achieved
without relying on encryption keys. Standard approaches
to dispersal either achieve very high security with corre-
spondingly high computational and storage costs, or low
security with lower costs. In this paper, we describe a
new dispersal scheme, called AONT-RS, which blends an
All-Or-Nothing Transform with Reed-Solomon coding
to achieve high security with low computational and stor-
age costs. We evaluate this scheme both theoretically and
as implemented with standard open source tools. AONT-
RS forms the backbone of a commercial dispersed stor-
age system, which we briefly describe and then use as a
further experimental testbed. We conclude with details
of actual deployments.

1 Introduction

Dispersed storage systems coalesce multiple storage sites
into a collective whole. Files are decomposed into
smaller blocks which are computationally massaged and
then dispersed to the storage sites. When a client desires
to read a file, it retrieves some subset of the blocks, which
are combined to reconstitute the original file. Compared
to traditional single-site storage systems, dispersed stor-
age systems offer a variety of benefits. Multiple indepen-
dent storage sites offer greater availability than a single
site, since they have no single point of failure. When
sites are physically distributed across a wide area, they
offer physical proximity to distributed clients, which can
improve performance and scalability. Finally, the mas-
saging of data typically includes adding redundancy in
the form of erasure codes or secret sharing, which im-
proves reliability in the face of failures.

There have been many dispersed storage systems
developed in the past ten years. Examples in-

clude storage systems such as Oceanstore [23], Perga-
mum [29], POTSHARDS [30], PASIS [9], Gridshar-
ing [31], Glacier [11], Cleversafe [4] and Tahoe-
LAFS [32] among others. Related to dispersed storage
systems are distributed or peer-to-peer storage systems
which use replication rather than coding to achieve relia-
bility. Examples include LOCKSS [14], Google file sys-
tem [8], Elephant [27], PAST [26] and BitTorrent [5].

A side benefit of dispersal is the ability to provide
security without the use of encryption keys. The basic
techniques are classics from computer science literature:
Shamir’s secret sharing [28] and Rabin’s information dis-
persal based on non-systematic erasure codes [21]. Each
technique is a (k,n) threshold scheme: The storage sys-
tem transforms a file into n distinct blocks. A client or
attacker must retrieve at least k of the n blocks to re-
construct the file. With fewer than k blocks, the client
or attacker gets no information. Several of the above-
mentioned systems [9, 30, 31] use these techniques to
achieve security by storing each of the n pieces at a dif-
ferent site, and assuming that an attacker will not be able
to authenticate himself to at least k of them. This avoids
encryption strategies which require the secure storage
of encryption keys, a difficult and dangerous practice
(see [30] for a thorough discussion of this problem).

Each technique achieves a different level of security
with different performance and storage requirements. If
the original file is b bytes in size, Shamir’s scheme re-
quires a total of nb bytes, while Rabin’s requires nb

k .
Shamir’s requires more computation as well. To com-
pensate for the extra storage and computation, Shamir’s
scheme is more secure, achieving information theoretic
security. Rabin’s security is far less, and would be unac-
ceptable in many environments.

In this paper, we describe a further modification to
Rabin’s scheme that achieves improved computational
performance, security and integrity. We achieve this by
combining the All-Or-Nothing Transform (AONT) [24]
with systematic Reed-Solomon erasure codes [13].



Hence, we call it AONT-RS. We describe the technique,
evaluate it both theoretically and experimentally and de-
tail how it fits into a commercial dispersed storage sys-
tem. We conclude with some field data of actual deploy-
ments.

2 Dispersal Algorithms

At the heart of all (k,n) threshold schemes (which we
heretofore call dispersal algorithms) is a matrix-vector
product, illustrated in Figure 1. The data to be stored is
broken into words or elementswhich are w bits in length.
A generator or dispersalmatrixG is created, which has n
rows and k columns. This matrix is multiplied by a k-
element vector D (called the data or message) to yield
a n-element vectorC called the codeword. Each element
of the codeword is stored on a different storage node.

Figure 1: The central matrix-vector product for all dis-
persal algorithms.

The dispersal matrix is constructed so that all combi-
nations of k rows yield invertible matrices. This gives
us a technique to reconstructD from any k surviving ele-
ments of the codeword: each row ofG corresponds to the
calculation of a codeword element. We create a new k×k
matrix A from the rows ofG that correspond to the k sur-
viving elements. We invert A and multiply A−1 by the
surviving elements to yield D. The construction of G
guarantees that A is invertible.

So that elements may fit into computer words, it is
convenient that w be a power of two. To achieve this,
we employ Galois Field arithmetic, GF(2w), where ad-
dition is equal to bitwise exclusive-or (XOR) and mul-
tiplication is implemented in a variety of ways either in
hardware or software. In this way, dispersal is simply a
variant of the well known Reed-Solomon codes [13, 22].

A tutorial on implementing Reed-Solomon codes in this
manner is available in [17], and a thorough discussion of
implementing Galois Field arithmetic is provided in [10].
There is also a methodology that converts multiplica-
tions into XOR’s described in [3]. There are open-
source implementations of these codes and methodolo-
gies in [16, 20, 25, 36].

Shamir’s secret sharing algorithm encodes w bits of
data in d0. The remaining elements of D are randomly
chosen w-bit words. The matrix G is a Vandermonde
matrix, where gi, j = i j, which guarantees that any k rows
are invertible so long as n ≤ 2w [28]. Thus, when one
uses Shamir’s algorithm on a b-byte file, the total stor-
age requirement is nb bytes, and the act of encoding re-
quires O(knb) XOR and multiplication operations (we
will characterize this further in Section 6 below). The se-
curity guarantees of Shamir’s algorithm are very strong
— even with an infinite amount of computing power, un-
less an attacker has possession of k words, he cannot de-
termine anything about the initial data. Moreover, this is
done without the necessity of storing encryption keys.

Rabin’s information dispersal algorithm (IDA) weak-
ens the security, but improves both storage efficiency and
performance. Each element of D now contains a word of
data. Thus the storage requirement is nb

k bytes, improv-
ing both storage efficiency and encoding performance by
a factor of k. Like Shamir, k elements of the codeword
are required to reconstruct the original data. However,
the security guarantees of Rabin are far less than Shamir.
We will analyze this below in Section 5, but attackers
looking for known or patterned data can find it more eas-
ily from elements of the codeword. To combat this prob-
lem, Rabin suggests a technique to generate the rows
of G randomly, embed the row id’s within each code-
word element, then encrypt the codewords [21]. Unfor-
tunately, this requires storing an external encryption key,
which does not solve the main problem we wish to solve
(providing security without securely storing encryption
keys).

In 1993, Krawczyk proposed a blending of Rabin and
Shamir, by encrypting the data with a key-based en-
cryption algorithm, and then dispersing the encrypted
data with an IDA and the key with a secret sharing
scheme [12]. This is called Secret Sharing Made Short
(SSMS). Our dispersal algorithm, described in the next
section, also enriches Rabin’s IDA with security. Unlike
SSMS, it does so without secret sharing, and with the
integration of integrity checking for corruption.

3 A New Dispersal Algorithm: AONT-RS

We enrich Rabin’s IDA in two ways. First, we employ
a variant of Rivest’s All-or-nothing Transform (AONT)
as a preprocessing pass over the data [24]. The AONT

2



may be viewed as a (s+1,s+1) threshold scheme. Data
composed of s words of size wA

1 is encoded into s+ 1
different words so that none of the original words may
be decoded unless all s+1 encoded words are present, or
an attacker possesses enough computing power to crack
an encryption key. The key, however, is encoded with
the data. If a file’s size is b bytes, the performance of
encoding is O(b). The benefits of the AONT are:

• No external keys are necessary.

• Very little extra storage is required.

• The computational requirements of the attacker may
be a parameter of the encoding.

• The performance is good.

The AONT works as follows. The data is composed
of swords d0, . . . ,ds−1, each of which iswA bits in length.
A random key K is chosen, and each codeword c i is cal-
culated as:

ci = di⊕E(K, i+ 1),

where E is a key-based encryption algorithm such as
AES [6]. A final codeword, ck, is calculated to be a func-
tion of K and a hash of the other codewords. The AONT
has computational security, which means that unless an
attacker possesses all s+1 codewords or can guessK, the
attacker cannot get information about any word or data.
We will discuss this further in section 5 below.

We modify this scheme slightly. We add an extra word
of data ds, called a canary [2]. This word has a known,
fixed value, which allows us to check the integrity of the
data when it is decoded.

We generate c0, . . . ,cs as described above and then cal-
culate a hash h of the s+ 1 codewords using a standard
hash algorithm such as SHA-256 [15] having an output
at least as long as K. We then calculate a final block cs+1
as:

cs+1 = K⊕h.

Our second modification of Rabin’s IDA is to employ
a systematic erasure code instead of a non-systematic
one. A systematic code is defined to be one where the
codeword contains the original elements of D. Without
loss of generality, the first k elements of C are equal to
the elements of D: ci = di for 0 ≤ i< k. This means that
the first k rows of G compose a k× k identity matrix as
pictured in Figure 2.

Employing a systematic erasure code instead of a non-
systematic one (as in both the Shamir and Rabin algo-
rithms) improves performance because it eliminates the

1Since AONT-RS mixes AONT with dispersal, we differentiate its
word size from the dispersal’s word size using wA instead of w.

Figure 2: A systematic erasure code.

need to encode the first k codewords. Since many sys-
tems use values of k that are large relative to n (e.g. POT-
SHARDS’ evaluation uses a (3,5) Shamir scheme [30])
the savings during encoding with a systematic erasure
code are substantial. Moreover, when decoding, code-
word elements that are equal to data elements do not have
to be decoded, which improves performance further.

We call our dispersal technique AONT-RS, as it is a
combination of the All-Or-Nothing Transform and Reed-
Solomon coding. The intuition is that we use the AONT
for security and the dispersal for availability, proximity
and fault-tolerance. This is unlike Shamir, Rabin and
SSMS which use dispersal to achieve both functions.

Figure 3: Encoding operation of AONT.

Several diagrams depict the operation of AONT-RS
and interaction between AONT and Reed-Solomon cod-
ing. In Figure 3, data is processed by AONT. A canary
is appended to the data, and the data and canary are en-
crypted with a random key. A hash value of the encrypted
data is computed. The hash value and random key are
then combined via bitwise exclusive-or to form a differ-
ence, which is appended to the encrypted data to form
the AONT package.

Once processed by AONT, the result is treated as nor-
mal input to a systematic IDA, as depicted in Figure 4.

3



Figure 4: Dispersal of AONT package using a systematic
IDA such as Reed-Solomon coding.

Figure 5: Recovering the AONT package from a thresh-
old number of slices.

The IDA splits the input into k slices formed directly
from the input and computes n− k coding slices. Slices
are then stored to separate locations.

At a future time, slices may be retrieved and used to
recover the data. The first step in this process requires
obtaining a threshold number of slices, as in Figure 5.
Short of a threshold number of slices the entire AONT
package cannot be recovered; there is not enough infor-
mation contained in m< k slices to yield the original in-
put, whose length is k times the slice length. However, if
one possesses any k of the slices, they may compute the
original input to the IDA which in this case is the AONT
package.

As shown in Figure 6, Reversing the AONT operation
is trivial when one possesses the entire package. The
first step is to compute the hash, h, of the encrypted data.
Since the last block contains K⊕h and we know the hash
value h, we may exclusive-or the last block with the hash
to find (K⊕ h⊕ h). Since h⊕ h equals zero, the result
is the random key K. The random key is then used to
decrypt the encrypted data, and the canary is checked to
detect corruption.

4 A Concrete Example

To help illustrate, we present a concrete example. Sup-
pose we have a 4KB block of data, D that we wish to
massage into 16 slices on 16 storage nodes so that we
may reconstruct and verify the data so long as we pos-

Figure 6: Restoring data from an AONT package.

sess any 10 slices.
Shamir: To apply Shamir’s algorithm, we view the

data as 4096 individual bytes, d0, . . . ,d4095. Each of the
16 slices S0, . . .S15 will also be composed of 4096 in-
dividual bytes si,0, . . . ,si,4095 such that si, j is a function
of d j and nine random bytes. Specifically,

si, j = d j⊕
9

!
x=1

(i+ 1)xr j,x,

where r j,x is a random byte and arithmetic is
over GF(28). The total storage requirement is 64 KB.

Rabin: To apply Rabin, we pad D to be 4100 bytes
and then partition it into ten data slices DS0, . . . ,DS9
of 410 bytes each. As with Shamir, we view each
data slice DSi to be composed of 410 individual
bytes DSi,0, . . .Dsi,409. We then calculate each of the
16 slices using Reed-Solomon coding on the individual
bytes: 2

si, j =
9

!
x=0

(i+ 1)xdx, j.

Again, arithmetic is over GF(28). The total storage re-
quirement is 16*410 = 6.41 KB.

SSMS: With SSMS, we select a random 16-byte en-
cryption key and encrypt the data with an encryption al-
gorithm such as AES. We then disperse it using Rabin
and disperse the key using Shamir. The total storage re-
quirement is 16*(410+16) = 6.65 KB.

AONT-RS: We will be adding 34 additional bytes to
the data, and we will first view it as being composed
of 257 16-byte words, d0, . . . ,d256, where the first 256
words are the original data. We set d256 to be a 16-byte
canary value. We choose K to be sixteen random bytes
and set each ci to equal di⊕ E(K, i+ 1) where E is a
standard encryption algorithm. Next we calculate h to
be a 16-byte hash of c0, . . . ,c256. Finally, we set c257 to
equal h⊕K. The last 2 bytes are immaterial – they are
simply padding so that the data may be partitioned into
ten equal slices. They could be used as additional ca-
naries if desired.

2While Rabin does not use a Vandermonde matrix in [21], the ma-
trix he employs has the same properties.

4



As with Rabin, we partition the 4130 bytes into ten
data slices DS0, . . . ,DS9 of 413 bytes each. These will
be stored on the first ten storage nodes. Six additional
coding slices CS0, . . . ,CS5 will be calculated using a dif-
ferent dispersal matrix, such as the one depicted in Fig-
ure 7, which is derived from the Vandermonde matrix for
systematic coding (see [18] for an explanation of why a
Vandermonde matrix is inadequate for this purpose). The
total storage requirement is 16*413 = 6.45 KB.





1 1 1 1 1 1 1 1 1 1
1 147 138 73 93 161 103 58 99 178
1 103 156 151 123 187 166 175 244 83
1 58 203 60 48 51 175 52 16 30
1 93 151 205 212 44 123 48 197 244
1 220 166 123 82 143 245 40 167 122





Figure 7: Dispersal matrix for the systematic (10,16)
Reed-Solomon code over GF(28).

In each of the four methods, a client or attacker needs
to acquire 10 of the 16 slices to read the data. Each
method has different security and performance charac-
teristics, which are included in the sections of Security
and Performance below.

5 Security Evaluation

The threat model that we use is one where individual
storage servers belong to different domains, both admin-
istrative and physical. Servers may be lost due to non-
security-related events like power failure or water dam-
age, or their security may be compromised; for example a
rogue system administrator or outside attacker can steal
data. Moreover, servers may become corrupted either
maliciously or due to the natural process of time. We
assume that the physical dispersal of storage servers is
limiting on an attacker, and that the difficulty of breach-
ing servers in multiple domains, along with a judicious
choice of k and n, is sufficient to make the system se-
cure.

All of these schemes provide a good level of security –
if one cannot truly decode the data without acquiring all k
slices, then an attacker without some a priori information
about the data will not be able to glean anything from
fewer than k slices. In the words of Rabin, “We do not
see a way of fully reconstructing even small portions ofD
from k−1 pieces” [21]. 3

However, if an attacker has some notion of what data
he or she is seeking but possesses fewer than k−1 slices,
then the schemes differ greatly. We will consider the
most pathological example: An attacker possesses m< k

3We have changed the variables in the quote to match our paper.

slices of the codewordC and wants to verify whether the
data that it encodes matches some predetermined value.
Further, if the attacker can verify that one slice of D
matches, then the attacker can be assured that the rest
matches. While this seems rather generous to the at-
tacker, there are many realistic attacking scenarios that
can be reduced to this one [7]. For each algorithm, we
assume that the attacker knows how the slices were gen-
erated, except for the random numbers.

Shamir: Shamir’s security is guaranteed. Attackers
cannot get any information from fewer than k slices,
regardless of their computing power. For example,
with k− 1 slices each of size w, there are 2w potential
values of d0 that can generate those slices. Thus, every
possible value of d0 is equally likely. One needs the k-th
slice to determine the actual value of d0. This is informa-
tion theoretic security.

Rabin: Since Rabin’s IDA has no randomness, it has
no security, even if the attacker owns just one slice. Since
the attacker knows how the slices are generated, com-
promise consists solely of verifying that a slice has a
predetermined value. Further, if the generator matrix is
known and the data has recognizable patterns (i.e. it is
not random looking) then it is possible to guess the con-
tent of missing slices. If one has k−1 slices, trying each
of the 2w possibilities for words of a missing slice will
yield k recognizable words when the correct value is at-
tempted.

SSMS: SSMS has computational security [12]. With-
out the key, one has to break the encryption, which can
be made computationally intractible with a large enough
key. Moreover, since Shamir protects the key with in-
formation theoretic security, there is no way get the key
with fewer than k slices.

AONT-RS: AONT has the property that unless one
has all of the encrypted data, one cannot decode any
of it. This is because one needs all of the data to dis-
cover K, and one cannot decode any of the data with-
outK. However, if an attacker ownsK and one slice, then
the attacker can easily verify that D has a predetermined
value, just as in Rabin. Thus, we analyze the difficulty
in having the attacker figure out K’s value. Suppose the
attacker owns the first slice, which contains the first en-
coded word ofD, which is equal to d0⊕E(K,1). The en-
coding function guarantees that enumeration is the only
way to discover K’s value, which means that an attacker
must test up to 2wA potential values of K to discover its
real value. Like SSMS, this is computational security.

Thus, both AONT-RS and SSMS have computational
security. If an attacker owns any data slice, then com-
promise can only occur by discovering K as above. If
an attacker owns a coding slice, then the attacker must
again enumerate potential values of K, calculate poten-
tial values of the slice and verify them. Owning k− 1

5



Algorithm Running Time Storage
Shamir Perf(n,k,kb) nb
Rabin Perf(n,k,b) nb

k
AONT-RS AONT(b)+ Perf(n− k,k,b) n(b+wA)

k

Table 1: Running time and storage requirements of the three dispersal algorithms.

slices adds no information – the act of verification still
boils down to enumerating all potential values of K. The
encryption and therefore missing words in other slices
cannot be guessed in the same way they can under Ra-
bin.

Special mention must be made of storing K ⊕ h as
the last element of the codeword. Cryptographic hash
functions are designed to have an unpredictable and uni-
formly distributed output. Further, they are designed to
follow the strict avalanche criterion [35], meaning h is
dependent on every bit of input. Therefore unless an at-
tacker knows all code words c0, . . . ,cs, h cannot be pre-
dicted. Modeling the hash function as a random oracle, h
encrypts K in the same manner as a One-Time-Pad [34]
and provides information theoretic security since h is the
same length as K. Therefore K⊕h yields no information
about K when h is unknown.

Moreover, the avalance criterion allows the canary to
be sufficient to check integrity. If any bit of the stored
slices is modified, then with sufficient probability, the
calculated hash h′ will be different from the one used
to calculate the difference. Since h ′ differs from h, the
calculated encryption key K will be incorrect, and as a
result, the value in the calculated canary will differ from
its known value.

While computational security is not as strong as infor-
mation theoretic security, in our view it is functionally
equivalent. As long as wA is sufficiently large, it is com-
putationally infeasible for an attacker to even verify that
slices hold given data. For example, when w= 256 as in
Section 4, compromise requires the enumeration of 2 256

keys. To put this in perspective, if each person on earth
had access to a trillion computers that can test a trillion
keys per second, it would take over 1035 years on average
to correctly guess the key. According to some estimates
of proton half-life, most matter in the universe will have
decayed before the key would be found [1].

6 Theoretical Performance

Let Perf(R,C,S) be the CPU time that it takes to en-
code D, composed of S total bytes, with a R×C disper-
sal matrix. In terms of big-O notation, Perf(R,C,S) =
O(RCS). A more precise evaluation of Perf(R,C,S) is
difficult, because of the variety of ways that the encod-

ing may be implemented. If one implements the encod-
ing with standard finite field arithmetic, then:

Perf(R,C,S) =
S
C

(
(R−1)(C−1)

Mult
+
R(C−1)

XOR

)
,

where Mult is the bandwidth of performing Galois Field
multiplication and XOR is the bandwidth of perform-
ing XOR operations. This is because encoding becomes
a series of dot products to create R coding slices each
of whose size is S

C bytes. The difference in the num-
ber of multiplications vs. XORs arises becuase nearly
all dispersal matrices are like Figure 7 and have ones in
their top rows and leftmost columns. Implementations
of Reed-Solomon coding do, however, differ in their per-
formance characteristics. Using Cauchy Reed-Solomon
coding [3], for example, substitutes additional XOR op-
erations for the multiplication and can improve perfor-
mance significantly [19].

Additionally, let AONT(S) be the time that it takes
to perform the AONT on S bytes of data. The choice
of wA, encryption and hashing technique will all af-
fect AONT(S). In general, though, it is O(S) and is also
easy to parallelize [24].

Given the parameters k, n, b, Perf(R,C,S), and
AONT(S) the performance of the three main dispersal
algorithms and their storage requirements are given in
Table 1. Since SSMS doesn’t specify a recommended
dispersal or encryption algorithm, we omit it from the
remaining analyses. Roughly, its performance will be
close to AONT-RS.

7 Microbenchmark Performance

To assess actual performance, we used open-source C li-
braries to perform the various functionalities. All tests
were performed on a 4-core Intel Xeon W3530 at 2.80
GHz with 6 GB of memory at 1066 MHz running Linux
kernel 2.6.32. Despite having multiple cores, all bench-
marks were performed using a single thread. For Reed-
Solomon coding, we used Luigi Rizzo’s open source li-
brary over GF(28) [25]. We tested a variety of k-of-n
configurations, ranging from 3-of-6 to 32-of-64, measur-
ing ce, defined as the bandwidth of creating each coding
slice, times k. For a given machine, ce should be rela-
tively constant, since the time to create each coding slice

6



0 10 20 30
n

0

50

100

150

200

En
co

di
ng

 S
pe

ed
 (M

B 
of

 d
at

a/
s)

k/n = 1/6

Shamir

0 10 20 30
n

0

50

100

150

200

k/n = 2/6 = 1/3

Rabin

0 10 20 30
n

0

50

100

150

200

k/n = 3/6 = 1/2

AONT-RS_fast

0 10 20 30
n

0

50

100

150

200

k/n = 4/6 = 2/3

AONT-RS_secure

0 10 20 30
n

0

50

100

150

200

k/n = 5/6

Figure 8: Performance comparison of the dispersal algorithms. Each graph affixes the k-to-n rate and plots speed of
encoding with each dispersal algorithm.

should be linear in k. Despite the wide disparity in con-
figurations, we observe that ce is fairly consistent, with
a minimum of 921.60 MB/s in the 3-of-6 configuration,
to a maximum of 994.00 MB/s in 27-of-54. The average
performance for the 30 configurations tested is 965.61
MB/s with a standard deviation of 11.42 MB/s. Thus, we
can use ce to approximate Perf as:

Perf(R,C,S) =
RCS

965.61MB/s
.

The encoding time for AONT is dependent on the
choice of cipher and hash function. To encode S bytes
using AONT, both the cipher and hash function must pro-
cess S bytes. Therefore the time equals the sum of the
time to encrypt S bytes plus the time to hash S bytes.
We tested the performance of two pairs of cipher/hash
algorithms, one tailored for high security (AES-256 and
SHA-256) and the other tailored for performance (RC4-
128 and MD5). For this test, we used OpenSSL 0.9.8k
with a block size of 8 KB. The results are in Table 2.

Encoding Rate (MB/s)
AES-256 143.30
RC4-128 414.17
SHA-256 160.03
MD5 559.47

Table 2: Performance of two encryption algorithms
(AES-256 and RC4-128) and two hash algorithms (SHA-
256 and MD5).

Thus, we come up with two functions for AONT(S),
one which we call secure (AES-256 and SHA-256), and
one which we call fast (RC4-128 and MD5):

AONTsecure(S) =
S

75.60MB/s

AONTfast(S) =
S

237.99MB/s

We now have the necessary information to use Table 1
to evaluate the performance of the three dispersal algo-
rithms for any k-of-n configuration. We do so in Figure 8.
Each graph affixes a k-of-n ratio called a rate and then
plots the speed of encoding in MB of data per second.
The rates increase by 1

6 for each successive graph, start-
ing with a very low rate of 1

6 and proceeding to a very
high rate of 5

6 .
The trade-offs of the various formulas are apparent

from the graph. There is a dispersal cost for all three
algorithms and an AONT cost for the AONT-RS algo-
rithms. The AONT cost is constant, since it depends
solely on the size of the data. Thus, when disper-
sal is very fast, as in the 1-of-6 and 2-of-6 cases, Ra-
bin outperforms AONT-RSfast and Shamir outperforms
AONT-RSsecure. As k and n grow, however, the dispersal
costs increase. This increase is most pronounced with
Shamir, then with Rabin and finally with AONT-RS. For
each rate except the very low 1

6 , there is a point where
the performance of AONT-RSfast becomes the best, and
a point where AONT-RSsecure’s performance surpasses
both Shamir and Rabin. These points come at lower val-
ues of n for higher k-of-n rates.

A schematic of Cleversafe’s storage architecture is de-
picted in Figure 9. Although not plotted above, of spe-
cial interest is the 3-of-5 data point, since this is the k-
of-n configuration measured by POTSHARDS [30], an
archival storage system that uses Shamir for both fault-
tolerance and security. For this configuration, the perfor-

7



Figure 9: A high-level picture of Cleversafe’s storage architecture.

mance of AONT-RSsecure (65.4 MB/s) is nearly identical
to Shamir (64.4 MB/s), which means that a system like
POTSHARDS can achieve computational security rather
than information theoretic security for the same perfor-
mance, but with a factor of three less storage.

8 Commercial Dispersed Storage System

AONT-RS is a feature in the storage software and appli-
ances sold by Cleversafe, which developed the technique
to address the threat model of compromise, theft or loss
of disks and devices. By appropriately tuning the disper-
sal configuration, all disks or devices at an entire site can
be stolen and the data will remain confidential. Similarly,
as long as a minimum threshold of servers are available,
subsets of servers may be brought offline temporarily for
maintenance, or permanently for replacement. Since the
servers are protected by AONT-RS, storage owners may
dispose of servers without having to “wipe” the drives
clean, since the information on the servers is impossible
to obtain without gaining access to some subset of the
remaining servers.

Two paradigms are exposed to clients — a block
paradigm that supports standard protocols like NFS,
CIFS, FTP and iSCSI, and an object paradigm that sup-
ports larger storage units for better performance. An
Accesser calculates mappings that associate blocks or
objects to slices on dispersed storage servers (termed
“Slicestores” in Cleversafe’s product). A common con-
figuration is to encode each block or object into 16 slices
using a (10,16)-threshold AONT-RS scheme.

Block reads and writes that use iSCSI go through the
Accesser. The Accesser performs the block-to-slice en-
coding and decoding, and also manages the traffic to and
from the servers. The other protocols require a Gate-
way, typically co-located with the Accesser, that trans-
lates between the various file protocols and iSCSI. Since
this path has two hops and interacts with the servers
with small messages, the performance of the block pro-

tocols is limited by the networking hardware and not the
AONT-RS protocol. Storage servers do support multiple
Accessers, which relieves one bottleneck of the block-
based system.

To achieve better performance, Cleversafe also exports
a protocol for large objects. Objects are partitioned into
Megabyte-sized chunks, which are then encoded into
slices for dispersal. Clients may either read and write ob-
jects through the Accesser using HTTP, or they may use a
SDK to perform their own AONT-RS encoding/decoding
so that they may interact directly with the servers. In
both cases, the client manages the context of the object
name. A common software architecture is that clients
use a database to maintain the the meaning and relation-
ships of the content, and they store the object names in a
column of the database.

Slice pointers are 48 bytes in length and are com-
posed of three parts: routing information that enables
slices to be routed to and from the correct servers, the
source name which identifies the slice, and vault infor-
mation which enables access control. The source name
is opaque – its interpretation is dependent on the specific
client and server. Vaults are logical containers of stor-
age. Each vault has its own quotas, data coding param-
eters and access controls. Access controls are identity-
based; each vault may have an arbitrary number of ac-
counts granted read or write permissions to it.

Each slice is stored with metadata that identifies the
slice’s coding parameters and a version number. The ver-
sion number is increased for each distinct write of the
block or object, and concurrency control is maintained
via the SDK with transactions and a three-phase com-
mit. An additional parameter of each system is the write
threshold, z, where k ≤ z ≤ n. This specifies how many
slices must be written before a write can be committed.
Setting z closer to k improves latency at the expense of
reliability for a window of time. The remaining (n− z)
writes are processed in the background, which reduces
this window of exposure.

8



W
rite: A

ctual
Read: A

ctual

0

50

100

150

200
Ba

nd
w

id
th

 (M
B/

s)
Control

W
rite: Projected

W
rite: A

ctual
Read: A

ctual

AONT-RS
Fast

W
rite: Projected

W
rite: A

ctual
Read: A

ctual

AONT-RS
Secure

W
rite: Projected

W
rite: A

ctual
Read: A

ctual

Rabin

W
rite: Projected

Shamir

W
rite: Projected

W
rite: Client 1

W
rite: Client 2

Read: Client 1
Read: Client 2

0

50

100

150

200

Ba
nd

w
id

th
 (M

B/
s)

AONT-RS
Fast

W
rite: Projected

W
rite: Client 1

W
rite: Client 2

Read: Client 1
Read: Client 2

AONT-RS
Secure

W
rite: Projected

W
rite: Client 1

W
rite: Client 2

Read: Client 1
Read: Client 2

Rabin

(a) One client (b) Two clients

Figure 10: Actual and projected performance of dispersed storage of 10 MB objects on a (5,8) test configuration.

Authentication in the system is two-way: servers au-
thenticate themselves to clients by means of a digital
certificate, which identifies it within the dispersed stor-
age system and allows TLS sessions to be created. The
method of authentication of the client to the server is
flexible — both password and certificate-based authen-
tication are supported. Despite use of AONT-RS, se-
cure network communication is still required for security
since a threshold number of slices travel together over
the ‘last mile’ of the client’s connection.

All components are written in Java. Reed-Solomon
erasure coding is performed using Java’s FEC li-
brary [16], and encryption using SunJCE.

9 Measured Performance

To measure performance, we use a commercial config-
uration with one or two clients and eight servers. The
client and Accesser machines each have a 4-core Intel(R)
Xeon(R) X3430 processor running at 2.40 GHz with 8
MB cache and 16 GB of ECC RAM. Four GB of memory
is allocated to the JVM when executing the software. We
use the Java HotSpot(TM) 64-Bit Server VM (build 17.0-
b16, mixed mode) running Java 1.6.0 21. The storage
servers each have a 4-core Intel(R) Xeon(R) X3460 pro-
cessor at 2.80 GHz with 8 MB cache and 16 GB of ECC
RAM. For storage, each server has twelve 2 TB Seagate
SATA drives. The networking between components con-
sists of a 10 Gb Ethernet switch. To handle simultaneous
connections to multiple servers, the Accessers have 10
Gb network interface cards. The servers’ cards are 1 Gb.

Our main test has the client spend 10 minutes reading
and writing 10 MB objects, held in main memory, to the
eight-server storage network, using the SDK and object
interface. The coding parameters are k= 5 and n= 8, and
five threads are employed by the client to leverage all of
its cores. As in section 7, we recorded microbenchmarks

of the various components of dispersal:

AONTsecure(S) =
S

104.77MB/s

AONTfast(S) =
S

249.03MB/s
ce = 2628MB/s

The performance of a control and the dispersal algo-
rithms is shown in Figure 10(a). The control has the
client perform no encoding, but still sends 8 slices to the
servers. While the Cleversafe implementation is flexible,
allowing us to embed Rabin and both AONT-RS disper-
sal algorithms, we did not implement Shamir within the
framework. This is because the blowup of storage re-
quirements by a factor of five would be unreasonable.

We show the actual performance of writes and reads
for the control, the two AONT-RS implementations and
Rabin. We also include the projected write performance
of the dispersal algorithms, including Shamir, using the
performance equations from section 7, the microbench-
marks, plus the performance of the control as the actual
dispersal bandwidth (214 MB/s).

For the three dispersal algorithms that we tested, the
projected performance was within ten percent of the ac-
tual performance. We find this result compelling be-
cause the system on which the tests were performed was
a production-level system, implementing the full func-
tionality of Cleversafe’s commercial storage system, in-
cluding access control and metadata management.

In the tests with coding, the CPU utilization of the
client is measured to be 90%. Since the closest I/O bot-
tlenecks are the eight 1-Gbps links to the storage servers,
it is clear that the limiting factor in these tests is the
ability of the client computer to process data. To fur-
ther affirm the client as bottleneck, we ran two clients

9



simultaneously and present their performance in Fig-
ure 10(b). The clients’ performance is nearly identical
to Figure 10(a).

It is worth noting that AONT-RSsecure exhibits worse
performance when reading than when writing; we ex-
pected that during reads, less CPU resources would be
required, since some slices do not need to be processed
by the IDA. The worse performance is due to the SunJCE
implementation of AES, which is significantly slower
when decrypting than when encrypting. In a stand-alone
benchmark we observed 31.51 MB/s vs. 44.77 MB/s
when encrypting.

10 Tales of Deployment

Today, there are over 20 Cleversafe dispersed storage
installations in pilot and production around the world,
with customers drawing from a diverse set of industries
including financial, health care, entertainment, and de-
fense. Several customers (who have asked to remain
anonymous) have cited one important factor in their
purchasing decision: that the contents of small sets of
servers are meaningless in isolation. Thus, one can de-
commission disk drives or potentially even server sites
without having to “wipe” them, which can be expen-
sive 4. Since nearly all U.S. states have “data breach
laws,” that require companies to proactively disclose the
loss of storage that is not encrypted [33], using AONT-
RS can save companies time, attorney fees and bad pub-
licity that results from having to alert consumers to a data
breach.

One of Cleversafe’s deployments is for The Museum
of Broadcast Communications that serves its video col-
lections on the Internet. In particular, over 8,500 hours
of historical audio and video content have been digitized
and stored on tens of terabytes in one of Cleversafe’s dis-
persed storage systems. Roughly 200,000 monthly visi-
tors access the archives over the web.

The Museum deployment is composed of 16 storage
servers, each having 4 TB of raw capacity and spread
across 8 sites: Chicago, Dallas (two locations) Denver,
New Jersey, San Francisco, Seattle and Tampa. The sites
are situated across three power grids in the continental
United States, and the data is dispersed in a 10-of-16
configuration. In this way, even if one entire power grid
shuts down, enough servers will remain accessible to re-
trieve all the data. The Museum uses the object store
interface inside its internal database, so that users em-
ploy the database to search a rich set of metadata about
the movies, which can then be retrieved using the object
handle.

4For example, see http://www.east-tec.com/enterprise/
disposesecureent/.

Internally, Cleversafe maintains dispersed storage sys-
tems having over 1 PB of capacity. These are used in-
ternally for development, testing and storing production
data. Employees have their own personal vaults with ac-
cess to a 30 TB pool of dispersed storage, which is imple-
mented over 8 geographically separated storage servers
across the United States.

In one case, Cleversafe initially deployed a system
across four sites, but at a later time decided that it should
be migrated to 8 sites to provide better tolerance to site
and power grid outages. To accomplish this without
bringing the system down, machines were incrementally
boxed up and shipped across the country, such that at
all times a threshold number remained online. There-
fore the system remained accessible for reads and writes
throughout the process. The same essential technique is
now used to apply software updates. Nodes are upgraded
individually allowing the system to maintain availability
throughout the upgrade process.

11 Conclusion

Dispersed storage systems enable availability, scalabil-
ity, and performance based on physical proximity. They
also enable security via (k,n) threshold schemes that re-
quire attackers to authenticate themselves to k of n stor-
age nodes in order to read data. The threshold schemes
provide this security without relying on the secure stor-
age of encryption keys, which is a notoriously difficult
problem.

We have described a new dispersal algorithm called
AONT-RS, which combines the All-Or-Nothing Trans-
form with systematic Reed-Solomon codes to achieve
computational security. Compared to traditional ap-
proaches to dispersal, AONT-RS has a very attractive
blend of properties. Its storage and computational foot-
print is much less than Shamir secret sharing. While
Shamir achieves information theoretic security AONT-
RS’s security can be tuned so that compromise is com-
putationally infeasible. Compared to Rabin’s classic dis-
persal algorithm, AONT-RS achieves a far greater degree
of security, and also better performance for larger instal-
lations. This is because AONT-RS is based on a sys-
tematic Reed-Solomon erasure code rather than the non-
systematic code employed by Rabin. We have detailed
the theoretical and applied performance of the dispersal
algorithms, and described a commercial dispersed stor-
age product that is based upon the dispersal algorithm.

AONT-RS is not specific to our dispersal solution. For
example, the POTSHARDS archival storage system [30]
could use AONT-RS to implement computational rather
than information theoretic security and reduce their stor-
age requirements by a factor of three. Other solutions
such as Gridsharing [31] can improve their security by

10



employing AONT-RS rather than a standard systematic
Reed-Solomon code.

In future work, we would like to collect data from
our private and commercial deployments concerning fail-
ures, node availability, compromise and attack. Such
data will enable us to make better policy decisions con-
cerning configurations of dispersed storage. These deci-
sions will allow us to tune the AONT and erasure code
configuration used, and will also allow us to make the
most efficient use of our storage.

12 Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-0615221
and CSR-1016636. The authors gratefully acknowledge
Ilya Volvovski’s contribution to the work, plus Steve
Hand for shepherding the paper through the final review-
ing process.

References

[1] AMSLER et al, C. Review of particle physics.
Physics Letters B 667, 1 (2008).

[2] AYCOCK, J. Computer Viruses and Malware (Ad-
vances in Information Security). Springer-Verlag,
New York, 2006.

[3] BLOMER, J., KALFANE, M., KARPINSKI, M.,
KARP, R., LUBY, M., AND ZUCKERMAN, D. An
XOR-based erasure-resilient coding scheme. Tech.
Rep. TR-95-048, International Computer Science
Institute, August 1995.

[4] CLEVERSAFE, INC. Cleversafe dispersed storage.
Community portal:www.cleversafe.org, 2010.

[5] COHEN, B. Incentives build robustness in BitTor-
rent. In Workshop on Economics of Peer-to-Peer
Systems (Berkely, CA, June 2003).

[6] DAEMEN, J., AND RIJMEN, V. The Design of Ri-
jndael, AES— The Advanced Encryption Standard.
Springer-Verlag, New York, 2002.

[7] FERGUSON, N., SCHNEIER, B., AND KOHNO, T.
Cryptography Engineering. John Wiley & Sons
Ltd, Chichester, 2010.

[8] GHEMAWAT, S., GOBIOFF, H., AND LEUNG,
S. T. The Google file system. In 19th ACM Sympo-
sium on Operating Systems Principles (SOSP ’03)
(2003).

[9] GOODSON, G. R., WYLIE, J. J., GANGER, G. R.,
AND REITER, M. K. Efficient byzantine-tolerant
erasure-coded storage. In DSN-04: International
Conference on Dependable Systems and Networks
(Florence, Italy, 2004), IEEE.

[10] GREENAN, K., MILLER, E., AND SCHWARTZ,
T. J. Optimizing Galois Field arithmetic for diverse
processor architectures and applications. In MAS-
COTS 2008: 16th IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems (Baltimore, MD, September
2008).

[11] HAEBERLEN, A., MISLOVE, A., AND DR-
USCHEL, P. Glacier: Highly durable decentralized
storage despite massive corrolated failures. In 2nd
Symposium on Networked Systems Design and Im-
plementation (NSDI) (2005).

[12] KRAWCZYK, H. Secret sharing made short. In
13th Annual International Conference on Advances
in Cryptology (1993).

[13] MACWILLIAMS, F. J., AND SLOANE, N. J. A.
The Theory of Error-Correcting Codes, Part I.
North-Holland Publishing Company, Amsterdam,
New York, Oxford, 1977.

[14] MANIATIS, P., ROSENTHAL, D. S. H., ROUS-
SOPOULOS, M., AND BAKER, M. LOCKSS:
A peer-to-peer digital preservation system. ACM
Transactions on Computer Systems 23 (2003).

[15] NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY. Secure hash stan-
dard (shs). FIPS PUB 180-3, http:
//csrc.nist.gov/publications/fips/
fips180-3/fips180-3 final.pdf, October
2008.

[16] ONION NETWORKS. Java FEC Library
v1.0.3. Open source code distribution:
http://onionnetworks.com/fec/javadoc/,
2001.

[17] PLANK, J. S. A tutorial on Reed-Solomon coding
for fault-tolerance in RAID-like systems. Software
– Practice & Experience 27, 9 (September 1997),
995–1012.

[18] PLANK, J. S., AND DING, Y. Note: Correc-
tion to the 1997 tutorial on Reed-Solomon coding.
Software – Practice & Experience 35, 2 (February
2005), 189–194.

11



[19] PLANK, J. S., LUO, J., SCHUMAN, C. D., XU,
L., AND WILCOX-O’HEARN, Z. A performance
evaluation and examination of open-source erasure
coding libraries for storage. In FAST-2009: 7th
Usenix Conference on File and Storage Technolo-
gies (February 2009), pp. 253–265.

[20] PLANK, J. S., SIMMERMAN, S., AND SCHUMAN,
C. D. Jerasure: A library in C/C++ facilitating era-
sure coding for storage applications - Version 1.2.
Tech. Rep. CS-08-627, University of Tennessee,
August 2008.

[21] RABIN, M. O. Efficient dispersal of information
for security, load balancing, and fault tolerance.
Journal of the Association for Computing Machin-
ery 36, 2 (April 1989), 335–348.

[22] REED, I. S., AND SOLOMON, G. Polynomial
codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8
(1960), 300–304.

[23] RHEA, S., WELLS, C., EATON, P., GEELS, D.,
ZHAO, B., WEATHERSPOON, H., AND KUBIA-
TOWICZ, J. Maintenance-free global data storage.
IEEE Internet Computing 5, 5 (2001), 40–49.

[24] RIVEST, R. All-or-nothing encryption and the
package transform. In 4th International Workshop
on Fast Software Encryption (1997), pp. 210–218.

[25] RIZZO, L. Erasure codes based on Vander-
monde matrices. Gzipped tar file posted at
http://planete-bcast.inrialpes.fr/
rubrique.php3?id rubrique=10, 1998.

[26] ROWSTRON, A., AND DRUSCHEL, P. Stor-
age management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. ACM
SIGOPS Operating Systems Review 35, 5 (2001),
188–201.

[27] SANTRY, D. S., FEELEY, M. J., HUTCHINSON,
N. C., VEITCH, A. C., CARTON, W., AND OFIR,
J. The Google file system. In 17th ACM Sympo-
sium on Operating Systems Principles (SOSP ’99)
(1999).

[28] SHAMIR, A. How to share a secret. Communica-
tions of the ACM 22, 11 (November 1979), 612–
613.

[29] STORER, M. W., GREENAN, K. M., MILLER,
E. L., AND VORUGANTI, K. Pergamum: Replac-
ing tape with energy efficient, reliable, disk-based
archival storage. In FAST-2008: 6th Usenix Confer-
ence on File and Storage Technologies (San Jose,
February 2008), pp. 1–16.

[30] STORER, M. W., GREENAN, K. M., MILLER,
E. L., AND VORUGANTI, K. POTSHARDS – a
secure, long-term storage system. ACM Transac-
tions on Storage 5, 2 (June 2009).

[31] SUBBIAH, A., AND BLOUGH, D. M. An approach
for fault tolerant and secure data storage in collab-
orative work environments. In ACM Workshop on
Storage Security and Survivability (2005).

[32] TAHO-LAFS. Tahoe least authority file sys-
tem. Open source code distribution: http://
tahoe-lafs.org/trac/tahoe-lafs, 2010.

[33] VANCE, K. Keeping pace with data encryp-
tion laws. www.esecurityplanet.com/trends/
article.php/3887111, June 2010.

[34] VERNAM, G. S. Cipher printing telegraph systems
for secret wire and radio telegraphic communica-
tions. Journal of the IEEE 55 (1926), 109–115.

[35] WEBSTER, A. F., AND TAVARES, S. E. On the
design of S-boxes. In Advances in Cryptology -
Crypto ’85 (1985), Springer-Verlag, pp. 523–534.

[36] WILCOX-O’HEARN, Z. Zfec 1.4.0. Open source
code distribution: http://pypi.python.org/
pypi/zfec, 2008.

12


