RAG实战 第四章:RAG 检索增强技术与优化

本章将深入探讨 RAG 系统的核心——检索增强技术。我们将从最基础的相似度搜索开始,逐步讲解如何通过各种高级检索策略和优化技巧,确保 RAG 系统能够从海量知识库中精准、高效地找到最相关的上下文信息,从而显著提升生成答案的准确性和质量。


4.1 基础检索:向量相似度搜索

向量相似度搜索是 RAG 检索模块的基石。在第二章和第三章中我们了解到,文本内容被转换为高维向量并存储在向量数据库中。当用户发起查询时,查询本身也被向量化,然后通过计算查询向量与知识库中存储向量的相似度,来找出语义上最接近的文档片段。

向量相似度概念

在向量空间中,两个向量的相似度通常通过它们之间的距离或夹角来衡量。常用的相似度度量包括:

  • 余弦相似度 (Cosine Similarity):

    • 概念: 衡量两个向量在 N 维空间中夹角的余弦值。余弦相似度越接近 1,表示两个向量方向越一致,语义越相似;接近 0 表示几乎不相关;接近 -1 表示方向相反,语义相反。它只关注方向,不关注向量的长度(模)。

    • 公式: 对于两个向量 A 和 B,其余弦相似度 cos(thet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值