这份报告 围绕人工智能模型的构建、选择与优化展开,从理论探讨逐步深入到具体的应用开发。
首先从“如何构建一个满足要求的小模型”开始,探讨了在大型语言模型(LLMs)成熟的背景下,小模型的定义、数据准备、架构选择(如传统机器学习、小型神经网络、知识蒸馏、量化、剪枝)以及训练评估等关键步骤。随后,将焦点转向了“针对边缘 AI 如何构建模型”,详细讨论了边缘设备的资源限制、模型优化和压缩技术(如 QAT、剪枝、知识蒸馏)以及高效部署和推理的重要性。
接着探讨了“如何利用大语言模型解决传统机器学习和神经网络的问题”,提出了 LLMs 在数据增强、特征工程、模型选择辅助、提升可解释性以及小样本/零样本学习方面的应用潜力,并通过“客户评论情感分析”的具体应用举例,详细展示了 LLMs 如何通过生成语义嵌入和知识驱动的特征来解决传统特征工程的痛点。
在深入了解 LLMs 的优势后,进一步分析了“利用 LLMs 解决传统机器学习和神经网络问题可能面临的限制和约束”,特别是计算资源、成本、延迟、数据隐私、可控性(如“幻觉”现象)等挑战,并提出了相应的解决方案,如模型小型化、知识蒸馏、RAG(检索增强生成)和特定领域微调。
最后实践环节,讨论了“如何针对一个具体的应用问题选择和决策上述算法和模型”,并以“智能客服系统中的用户意图识别”为例,阐述了从需求分析到方案选择的详细决策流程。为了更好地将这些理论转化为实用工具,报告提到了一个“AI 模型方案选择器”,通过回答问题,可以为用户推荐最适合的 AI 解决方案。。
整个报告展现了从 AI 理论到实际应用开发的完整链条,强调了在不同场景下,根据具体需求灵活选择和优化 AI 模型的策略。