《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
《------正文------》
from math import*
from decimal import Decimal
class Similarity():
""" Five similarity measures function """
def euclidean_distance(self,x,y):
# 欧式距离
""" return euclidean distance between two lists """
return sqrt(sum(pow(a-b,2) for a, b in zip(x, y)))
def manhattan_distance(self,x,y):
# 曼哈顿距离
""" return manhattan distance between two lists """
return sum(abs(a-b) for a,b in zip(x,y))
def minkowski_distance(self,x,y,p_value):
# 闵可夫斯基距离
""" return minkowski distance between two lists """
return self.nth_root(sum(pow(abs(a-b),p_value) for a,b in zip(x, y)),
p_value)
def nth_root(self,value, n_root):
# 开n次方
""" returns the n_root of an value """
root_value = 1/float(n_root)
return round (Decimal(value) ** Decimal(root_value),3)
def cosine_similarity(self,x,y):
# 余弦相似度
""" return cosine similarity between two lists """
numerator = sum(a*b for a,b in zip(x,y))
denominator = self.square_rooted(x)*self.square_rooted(y)
return round(numerator/float(denominator),3)
def square_rooted(self,x):
# 平方根距离
""" return 3 rounded square rooted value """
return round(sqrt(sum([a*a for a in x])),3)
def jaccard_similarity(self,x,y):
# 杰卡德距离
""" returns the jaccard similarity between two lists """
intersection_cardinality = len(set.intersection(*[set(x), set(y)]))
union_cardinality = len(set.union(*[set(x), set(y)]))
return intersection_cardinality/float(union_cardinality)