4568: [Scoi2016]幸运数字
Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 404 Solved: 174
[ Submit][ Status][ Discuss]
Description
A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个
幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划
乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。
在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸
运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,
游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。
有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5
和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中
可以保留的最大幸运值是多少。
Input
第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整
数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一
条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N
<=20000,Q<=200000,Gi<=2^60
Output
输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。
Sample Input
4 2
11 5 7 9
1 2
1 3
1 4
2 3
1 4
11 5 7 9
1 2
1 3
1 4
2 3
1 4
Sample Output
14
11
11
倍增+线性基
看到要求一个集合的子集的最大异或和,想到用线性基,因为线性基可以刚好异或出原集合可以异或出的所有数。
这样如果求出一个集合的线性基,只要在线性基里贪心,就可以得出答案。
于是问题变为如何将线性基合并,暴力合并显然不可取。看到要求一条树链的线性基,考虑树上倍增优化,预处理O(nlogn),单次询问O(logn)。
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define N 20005
using namespace std;
int n,m,cnt,fa[N][16],head[N],dep[N];
ll f[N][16][65],a[65];
struct edge{int next,to;}e[N*2];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void add_edge(int x,int y)
{
e[++cnt]=(edge){head[x],y};head[x]=cnt;
e[++cnt]=(edge){head[y],x};head[y]=cnt;
}
void add(ll *a,ll x)
{
D(i,60,0) if ((x>>i)&1ll)
{
if (!a[i]){a[i]=x;return;}
else x^=a[i];
}
}
void merge(ll *a,ll *b)
{
D(i,60,0) if (b[i]) add(a,b[i]);
}
void dfs(int x)
{
dep[x]=dep[fa[x][0]]+1;
F(i,1,15) if (fa[x][i-1])
{
fa[x][i]=fa[fa[x][i-1]][i-1];
memcpy(f[x][i],f[x][i-1],sizeof(f[x][i-1]));
merge(f[x][i],f[fa[x][i-1]][i-1]);
}
for(int i=head[x];i;i=e[i].next) if (e[i].to!=fa[x][0])
{
fa[e[i].to][0]=x;
dfs(e[i].to);
}
}
int lca(int x,int y)
{
if (dep[x]<dep[y]) swap(x,y);
int tmp=dep[x]-dep[y];
D(i,15,0) if ((tmp>>i)&1) merge(a,f[x][i]),x=fa[x][i];
if (x==y) return x;
D(i,15,0) if (fa[x][i]!=fa[y][i])
{
merge(a,f[x][i]);merge(a,f[y][i]);
x=fa[x][i];y=fa[y][i];
}
merge(a,f[x][0]);merge(a,f[y][0]);
return fa[x][0];
}
int main()
{
n=read();m=read();
F(i,1,n){ll x;scanf("%lld",&x);add(f[i][0],x);}
F(i,1,n-1){int x=read(),y=read();add_edge(x,y);}
dfs(1);
while (m--)
{
memset(a,0,sizeof(a));
int x=read(),y=read(),z=lca(x,y);
merge(a,f[z][0]);
ll ans=0;
D(i,60,0) ans=max(ans,ans^a[i]);
printf("%lld\n",ans);
}
}