2021 ICPC网络赛第二场

本文介绍了三道编程竞赛题目,涉及水杯溢流问题、洛必达法则应用及二进制加法。解题思路包括优先级排序解决水杯问题,递归求解洛必达法则,以及处理符号不同的二进制加法。通过具体代码展示了解题过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Powered by:NEFU AB-IN

2021 ICPC网络赛第二场

J

  • 题意

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0Hy7XMTd-1632741927957)(C:\Users\liusy\AppData\Roaming\Typora\typora-user-images\image-20210927163105062.png)]

    有一个n×nn×nn×n的房顶,每个位置都相当于会有个高为hi,jh_{i,j}hi,j的水杯,水往低处流。在高度为000处为泄漏,问会泄露多少水

  • 思路

    写个排序,高处的水优先往低处流,有000就有答案,没000没有答案

  • 代码

    /*
     * @Author: NEFU AB-IN
     * @Date: 2021-09-25 14:08:39
     * @FilePath: \Contest\J.cpp
     * @LastEditTime: 2021-09-25 14:27:06
     */
    #include <bits/stdc++.h>
    using namespace std;
    const int N = 505;
    struct sa
    {
        int height;
        int x;
        int y;
    };
    bool cmp(const sa &a, const sa &b)
    {
        return a.height > b.height;
    }
    int n, m, cnt = 0, h[N][N];
    double a[N][N];
    sa b[N * N];
    int f(int x, int y)
    {
        if (x >= 1 && x <= n && y >= 1 && y <= n)
            return 1;
        return 0;
    }
    void add(int x, int y)
    {
        int sum = 0;
        if (f(x - 1, y) && h[x - 1][y] < h[x][y])
            sum++;
        if (f(x + 1, y) && h[x + 1][y] < h[x][y])
            sum++;
        if (f(x, y - 1) && h[x][y - 1] < h[x][y])
            sum++;
        if (f(x, y + 1) && h[x][y + 1] < h[x][y])
            sum++;
        double hh = a[x][y];
        if (f(x - 1, y) && h[x - 1][y] < h[x][y])
            a[x - 1][y] += hh / sum;
        if (f(x + 1, y) && h[x + 1][y] < h[x][y])
            a[x + 1][y] += hh / sum;
        if (f(x, y - 1) && h[x][y - 1] < h[x][y])
            a[x][y - 1] += hh / sum;
        if (f(x, y + 1) && h[x][y + 1] < h[x][y])
            a[x][y + 1] += hh / sum;
    }
    
    int main()
    {
        ios::sync_with_stdio(0);
        cin.tie(0);
        cout.tie(0);
    
        cin >> n >> m;
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1, x; j <= n; j++)
            {
                cin >> h[i][j];
                b[++cnt] = {h[i][j], i, j};
            }
        }
        sort(b + 1, b + 1 + cnt, cmp);
        memset(a, 0, sizeof(a));
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                a[i][j] += m;
        for (int i = 1; i <= cnt; i++)
        {
            if (b[i].height == 0)
                break;
            add(b[i].x, b[i].y);
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                if (h[i][j] == 0)
                    printf("%.6f ", a[i][j]);
                else
                    printf("0 ");
            }
            printf("\n");
        }
        return 0;
    }
    

G

  • 题意

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EVj4PLEG-1632741927960)(C:\Users\liusy\AppData\Roaming\Typora\typora-user-images\image-20210927190307034.png)]

  • 思路

    一步步进行ttt次洛必达即可,每次在循环里判断分子是否为000,如果不为000且不是最后一次洛必达,那么就是infinityinfinityinfinity
    在这里插入图片描述

  • 代码

    /*
     * @Author: NEFU AB-IN
     * @Date: 2021-09-25 12:11:45
     * @FilePath: \Contest\g.cpp
     * @LastEditTime: 2021-09-27 19:23:03
     */
    #include <bits/stdc++.h>
    using namespace std;
    #define LL long long
    #define MP make_pair
    #define SZ(X) ((int)(X).size())
    #define IOS                      \
        ios::sync_with_stdio(false); \
        cin.tie(0);                  \
        cout.tie(0);
    #define DEBUG(X) cout << #X << ": " << X << endl;
    typedef pair<int, int> PII;
    
    int n, t;
    const int N = 105;
    int a[N], b[N];
    
    signed main()
    {
        IOS;
        cin >> n >> t;
        for (int i = 1; i <= n; ++i)
        {
            cin >> a[i] >> b[i];
        }
        int fm = 1, now = 0;
        for (int i = 1; i <= t; ++i)
        {
            now = 0;
            fm *= i;
            if (i == 1)
            {
                for (int j = 1; j <= n; j++)
                    now = now + a[j] * b[j];
            }
            else if (i == 2)
            {
                for (int j = 1; j <= n; j++)
                    now = now + a[j] * b[j] * b[j] * (-1);
            }
            else if (i == 3)
            {
                for (int j = 1; j <= n; j++)
                    now = now + a[j] * b[j] * b[j] * 2 * b[j];
            }
            else if (i == 4)
            {
                for (int j = 1; j <= n; j++)
                    now = now + a[j] * b[j] * b[j] * (-6) * b[j] * b[j];
            }
            else
            {
                for (int j = 1; j <= n; j++)
                    now = now + a[j] * b[j] * b[j] * 24 * b[j] * b[j] * b[j];
            }
            if (now != 0 && i != t)
            {
                cout << "infinity" << endl;
                return 0;
            }
        }
        int gcd = __gcd(now, fm);
        fm /= gcd;
        now /= gcd;
        if (fm == 1)
            cout << now << '\n';
        else
            cout << now << "/" << fm << '\n';
        return 0;
    }
    

M

  • 题意

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zsI1oAsd-1632741927961)(C:\Users\liusy\AppData\Roaming\Typora\typora-user-images\image-20210927163701024.png)]

  • 思路

    • 如果a[i]+b[i]=1a [ i ] + b [ i ] = 1a[i]+b[i]=1,则c[i]=1c [ i ] = 1c[i]=1
    • 如果a[i]+b[i]=2a [ i ] + b [ i ] = 2a[i]+b[i]=2,就要开始进位了,再来一层循环,从j=i+1j = i + 1j=i+1开始循环,
    • 如果 sign[j]=sign[i]sign [ j ] = sign [ i ]sign[j]=sign[i],那么就像普通的二进制加法一样,该进位就进位,不该进位就不用进位,这里不再细谈。
    • 如果 sign[j]≠sign[i]sign[ j ] \ne sign [ i ]sign[j]=sign[i]了,因为符号不同了,相当于出现了减法,不再是单纯的二进制加法,所以就要像十进制减法一样,我们考虑“借位”。
  • 代码

    /*
     * @Author: NEFU AB-IN
     * @Date: 2021-09-27 16:57:43
     * @FilePath: \Contest\m1.cpp
     * @LastEditTime: 2021-09-27 17:07:39
     */
    #include <bits/stdc++.h>
    using namespace std;
    #define LL long long
    #define MP make_pair
    #define SZ(X) ((int)(X).size())
    #define IOS                      \
        ios::sync_with_stdio(false); \
        cin.tie(0);                  \
        cout.tie(0);
    #define DEBUG(X) cout << #X << ": " << X << endl;
    typedef pair<int, int> PII;
    
    const int N = 205;
    LL a[N], b[N], n, sg[N], c[N];
    
    void opt(LL c[])
    {
        for (int i = 0; i < n; ++i)
        {
            printf("%ld", c[i]);
            if (i != n - 1)
                putchar(' ');
        }
    }
    signed main()
    {
        cin >> n;
        for (int i = 0; i < n; ++i)
            cin >> sg[i];
        for (int i = 0; i < n; ++i)
            cin >> a[i];
        for (int i = 0; i < n; ++i)
            cin >> b[i];
    
        for (int i = 0; i < n; ++i)
        {
            c[i] += a[i] + b[i];
            while (c[i] >= 2)
            {
                c[i] -= 2;
                for (int j = i + 1; j < n; ++j)
                {
                    c[j] += 1;
                    if (sg[j] == sg[i])
                        break;
                }
            }
        }
        opt(c);
        return 0;
    }
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NEFU AB-IN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值