前言:Hello大家好,我是小哥谈。PP-LCNet是一个由百度团队针对Intel-CPU端加速而设计的轻量高性能网络。它是一种基于MKLDNN加速策略的轻量级卷积神经网络,适用于多任务,并具有提高模型准确率的方法。与之前预测速度相近的模型相比,PP-LCNet具有更高的准确性。此外,对于计算机视觉的下游任务(如目标检测、语义分割等),该模型的效果也很好。 PP-LCNet还采用了H-Swish激活函数,这是一种优化的激活函数,可以提高性能而几乎不增加预测时间。🌈
前期回顾:
YOLOv5算法改进(2)— 注意力机制介绍(SE、CBAM和CA)
YOLOv5算法改进(3)— 注意力机制介绍(ECA、SOCA和SimAM)
YOLOv5算法改进(4)— 添加SE注意力机制(包括代码+添加步骤+网络结构图)
YOLOv5算法改进(5)— 主干网络介绍(MobileNetV3、ShuffleNetV2和GhostNet)
YOLOv5算法改进(6)— 主干网络介绍(EfficientNetv2、Swin Transformer和PP-LCNet)
YOLOv5算法改进(7)— 添加单层注意力机制(包括代码+添加步骤+网络结构图)
YOLOv5算法改进(8)— 添加多层注意力机制(包括代码+添加步骤+网络结构图)
YOLOv5算法改进(9)— 添加SOCA注意力机制(包括代码+添加步骤+网络结构图)
目录