主干网络篇 | YOLOv8更换主干网络之SwinTransformer

本文详细介绍了如何将YOLOv8的主干网络替换为Swin Transformer结构,包括Swin Transformer的基础概念、网络结构、修改步骤以及改进方法。通过对block.py、__init__.py、tasks.py文件的修改,创建自定义yaml配置文件,以及编写新的train.py文件,成功将YOLOv8与Swin Transformer结合,以提高目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:Hello大家好,我是小哥谈。Swin Transformer是一种基于Transformer架构的图像分类模型,与传统的Transformer模型不同,Swin Transformer通过引入分层的窗口机制来处理图像,从而解决了传统Transformer在处理大尺寸图像时的计算和内存开销问题。Swin Transformer的核心思想是将图像划分为一系列的非重叠窗口,并在每个窗口上应用Transformer模型。这种窗口化的策略使得Swin Transformer能够处理大尺寸图像,同时保持了全局感知能力。此外,Swin Transformer还引入了跨窗口的注意力机制,以便窗口之间可以相互交互信息。Swin Transformer的网络结构由多个基本组件组成,包括一个Patch Embedding层多个Stage一个Head层。Patch Embedding层将输入图像划分为一系列的小块,并将每个小块映射为一个向量表示。每个Stage由多个基本块组成,每个基本块包含一个窗口化的Transformer模块和一个跨窗口的注意力模块。最后,Head层将最后一个Stage的输出进行分类。本文就教大家如何将YOLOv8的主干网络更换为Swin Transformer结构!~🌈  

      目录

🚀1.基础概念

🚀2.网络结构

🚀3.添加步骤

🚀4.改进方法

🍀🍀步骤1:block.py文件修改

🍀🍀步骤2:__init__.py文件修改

🍀🍀步骤3:tasks.py文件修改

### 替换 YOLOv8 主干网络为 Swin Transformer 在 YOLOv8 中替换主干网络为 Swin Transformer 是一项复杂的任务,涉及修改模型结构并适配预训练权重。以下是实现这一目标的关键点和技术细节。 #### 1. 安装依赖库 为了支持 Swin Transformer 的集成,需要安装 `torch` 和 `mmdet` 或其他支持 Swin Transformer 的第三方库。如果使用 Ultralytics 提供的官方框架,则需额外导入 Swin Transformer 的实现模块。 ```bash pip install ultralytics torch mmdet timm ``` #### 2. 导入必要的模块 加载所需的 Python 库以及定义 Swin Transformer 模型。 ```python import torch from torchvision import transforms from yolov8.models.yolo import DetectionModel from swin_transformer import SwinTransformer # 假设已有一个可用的 Swin Transformer 实现 ``` #### 3. 加载原始 YOLOv8 模型 从 Ultralytics 的仓库中加载默认配置文件和预训练权重。 ```python model = DetectionModel(cfg="yolov8.yaml", ch=3, nc=80) # 初始化 YOLOv8 检测模型 print(model) ``` #### 4. 创建 Swin Transformer 并调整其输出维度 Swin Transformer 的输出通道数可能与原生 YOLOv8 主干网络不同,因此需要对其进行裁剪或扩展以匹配后续层的要求[^1]。 ```python swin_model = SwinTransformer( img_size=640, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.2, ape=False, patch_norm=True, ) # 修改最后一层以适应 YOLOv8 输入需求 out_channels_yolo = model.backbone[-1].conv.out_channels swin_out_features = swin_model.num_features # 获取 Swin 输出特征数量 adapter_layer = torch.nn.Conv2d(swin_out_features, out_channels_yolo, kernel_size=1, stride=1) ``` #### 5. 将 Swin Transformer 替换到 YOLOv8 中 将自定义的 Swin Transformer 插入到 YOLOv8 架构中替代原有的主干网路部分。 ```python class CustomYoloV8(DetectionModel): def __init__(self, cfg, ch, nc): super().__init__(cfg, ch, nc) self.swin_backbone = swin_model self.adapter_conv = adapter_layer def forward(self, x): x = self.swin_backbone(x)[-1] # 使用 Swin Transformer 特征提取器 x = self.adapter_conv(x) # 调整通道数至兼容原有 backbone 结果 return super().forward(x) # 继续执行其余检测流程 custom_model = CustomYoloV8(cfg="yolov8.yaml", ch=3, nc=80) ``` #### 6. 训练新模型 完成上述更改后即可按照常规方式微调整个网络参数。 ```python from ultralytics.utils.callbacks import Callbacks callbacks = Callbacks() train_loader, val_loader = prepare_data() # 自己的数据准备函数 for epoch in range(num_epochs): custom_model.train() train_loss = [] for imgs, labels in train_loader: preds = custom_model(imgs) loss = compute_loss(preds, labels) optimizer.zero_grad() loss.backward() optimizer.step() train_loss.append(loss.item()) avg_train_loss = sum(train_loss)/len(train_loss) print(f'Epoch {epoch}, Loss: {avg_train_loss}') callbacks.on_epoch_end(epoch, logs={'loss': avg_train_loss}) ``` --- ### 注意事项 - **输入尺寸一致性**:确保 Swin Transformer 接受的图片分辨率与下游任务一致[^2]。 - **迁移学习策略**:可以冻结大部分 Swin 层仅优化新增加的部分或者采用渐进解冻法逐步释放更多可更新权值来加速收敛过程。 - **性能评估对比**:由于引入了新的骨干组件,在实际部署前应充分验证其效果是否优于传统 CNN 设计方案[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小哥谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值