@inproceedings{chen-etal-2025-cracking,
title = "Cracking Factual Knowledge: A Comprehensive Analysis of Degenerate Knowledge Neurons in Large Language Models",
author = "Chen, Yuheng and
Cao, Pengfei and
Chen, Yubo and
Wang, Yining and
Liu, Shengping and
Liu, Kang and
Zhao, Jun",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.505/",
doi = "10.18653/v1/2025.acl-long.505",
pages = "10240--10261",
ISBN = "979-8-89176-251-0",
abstract = "Knowledge neuron theory provides a key approach to understanding the mechanisms of factual knowledge in Large Language Models (LLMs), which suggests that facts are stored within multi-layer perceptron neurons. This paper further explores **Degenerate Knowledge Neurons** (DKNs), where distinct sets of neurons can store identical facts, but unlike simple redundancy, they also participate in storing other different facts. Despite the novelty and unique properties of this concept, it has not been rigorously defined and systematically studied. Our contributions are: (1) We pioneer the study of structures in knowledge neurons by analyzing weight connection patterns, providing a comprehensive definition of DKNs from both functional and structural aspects. (2) Based on this definition, we develop the **Neuronal Topology Clustering** method, leading to a more accurate DKN identification. (3) We demonstrate the practical applications of DKNs in two aspects: guiding LLMs to learn new knowledge and relating to LLMs' robustness against input errors."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-cracking">
<titleInfo>
<title>Cracking Factual Knowledge: A Comprehensive Analysis of Degenerate Knowledge Neurons in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuheng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengfei</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yining</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shengping</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Knowledge neuron theory provides a key approach to understanding the mechanisms of factual knowledge in Large Language Models (LLMs), which suggests that facts are stored within multi-layer perceptron neurons. This paper further explores **Degenerate Knowledge Neurons** (DKNs), where distinct sets of neurons can store identical facts, but unlike simple redundancy, they also participate in storing other different facts. Despite the novelty and unique properties of this concept, it has not been rigorously defined and systematically studied. Our contributions are: (1) We pioneer the study of structures in knowledge neurons by analyzing weight connection patterns, providing a comprehensive definition of DKNs from both functional and structural aspects. (2) Based on this definition, we develop the **Neuronal Topology Clustering** method, leading to a more accurate DKN identification. (3) We demonstrate the practical applications of DKNs in two aspects: guiding LLMs to learn new knowledge and relating to LLMs’ robustness against input errors.</abstract>
<identifier type="citekey">chen-etal-2025-cracking</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.505</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.505/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>10240</start>
<end>10261</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cracking Factual Knowledge: A Comprehensive Analysis of Degenerate Knowledge Neurons in Large Language Models
%A Chen, Yuheng
%A Cao, Pengfei
%A Chen, Yubo
%A Wang, Yining
%A Liu, Shengping
%A Liu, Kang
%A Zhao, Jun
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F chen-etal-2025-cracking
%X Knowledge neuron theory provides a key approach to understanding the mechanisms of factual knowledge in Large Language Models (LLMs), which suggests that facts are stored within multi-layer perceptron neurons. This paper further explores **Degenerate Knowledge Neurons** (DKNs), where distinct sets of neurons can store identical facts, but unlike simple redundancy, they also participate in storing other different facts. Despite the novelty and unique properties of this concept, it has not been rigorously defined and systematically studied. Our contributions are: (1) We pioneer the study of structures in knowledge neurons by analyzing weight connection patterns, providing a comprehensive definition of DKNs from both functional and structural aspects. (2) Based on this definition, we develop the **Neuronal Topology Clustering** method, leading to a more accurate DKN identification. (3) We demonstrate the practical applications of DKNs in two aspects: guiding LLMs to learn new knowledge and relating to LLMs’ robustness against input errors.
%R 10.18653/v1/2025.acl-long.505
%U https://aclanthology.org/2025.acl-long.505/
%U https://doi.org/10.18653/v1/2025.acl-long.505
%P 10240-10261
Markdown (Informal)
[Cracking Factual Knowledge: A Comprehensive Analysis of Degenerate Knowledge Neurons in Large Language Models](https://aclanthology.org/2025.acl-long.505/) (Chen et al., ACL 2025)
ACL