主成分分析(Principal Component Analysis,PCA)

1.主成分分析

关于PCA的介绍:用最直观的方式告诉你:什么是主成分分析PCA

笔记来源:Principal Component Analysis (PCA)

PCA是数据降维的方法之一

1.1 降维(Dimensionality Reduction)

降维的目的之一:存储的数据减少

相机选一个什么角度才能最大程度的保留大部分人物的信息?

将数据点投影到直线上,应该选择哪一条直线才能尽可能保留最多的数据信息?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值