Actor-Critic算法:兼具价值函数和策略的混合模型
作者:禅与计算机程序设计艺术
1. 背景介绍
强化学习是机器学习领域中一个重要的分支,其核心思想是通过与环境的交互,让智能体学会如何做出最佳决策以获得最大化的奖赏。在强化学习中,有两大类主要算法:基于价值函数的方法(如Q-learning、DQN等)和基于策略梯度的方法(如REINFORCE、PPO等)。
Actor-Critic算法是一种结合了价值函数和策略梯度的混合模型,兼具两种方法的优点。该算法由两个神经网络组成:Actor网络负责学习最优策略,Critic网络负责评估当前策略的优劣。Actor网络通过策略梯度更新策略,Critic网络通过时序差分误差更新价值函数,两者相互促进,共同优化智能体的决策。
2. 核心概念与联系
Actor-Critic算法的核心思想是将强化学习问题分解为两个子问题:
Actor网络:学习最优策略 $\pi(a|s)$,即在状态$s$下采取动作$a$的概率。Actor网络通过策略梯度算法不断优化策略,使智能体能够做出最优决策。
Critic网络:学习状态价值函数$V(s)$,即从状态$s$出发,智能体可以获得的预期累积奖赏。Critic网络通过时序差分误差不断调整价值函数的估计,为Actor网络提供反馈信号。
Actor网络和Critic网络相互依赖、相互促进,共同优化智能