1. 背景介绍
1.1 图像生成技术的演进
图像生成技术近年来发展迅速,从早期的像素级别的操作到如今的深度学习模型,技术不断革新,生成图像的质量和效率也不断提高。早期的图像生成方法主要依赖于人工设计规则和模板,例如使用纹理合成技术来生成纹理图像。随着深度学习技术的兴起,生成对抗网络(GANs)成为图像生成领域的主流方法,能够生成逼真度更高的图像。然而,GANs 训练过程不稳定,容易出现模式坍塌和梯度消失等问题,限制了其应用范围。
1.2 扩散模型的优势
近年来,扩散模型(Diffusion Models)逐渐成为图像生成领域的新宠。扩散模型通过逐步添加高斯噪声将图像转换为噪声,然后学习逆向过程来从噪声中恢复原始图像。相比于 GANs,扩散模型具有以下优势:
- 训练更稳定: 扩散模型的训练过程更加稳定,不易出现模式坍塌和梯度消失等问题。
- 生成图像质量更高: 扩散模型能够生成更逼真、更清晰的图像。
- 控制生成过程: 扩散模型允许通过控制噪声水平来控制图像生成的细节和多样性。
1.3 潜在扩散模型的提出
潜在扩散模型(Latent Diffusion Models)是扩散模型的一种改进版本,它将图像编码到低维度的潜在空间,然后在潜在空间中进行扩散过程。这种方法可以有效降低计算成本,提高生成效率,同时保留图像的重要特征。