强化学习算法:策略梯度(Policy Gradient)原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:强化学习,策略梯度,深度学习,深度 Q 网络,蒙特卡洛方法,优势函数
1. 背景介绍
1.1 问题的由来
强化学习(Reinforcement Learning,RL)是机器学习的一个分支,它关注于如何通过与环境互动来学习行为,以达到特定的目标。在强化学习中,学习者通过与环境交互来学习如何选择行动,以最大化累积奖励。策略梯度方法是强化学习中的一类算法,它关注于直接优化决策过程的策略,而不是学习状态价值或动作价值。
1.2 研究现状
随着深度学习的兴起,策略梯度方法得到了极大的发展,尤其是通过引入深度神经网络来近似策略函数。这使得策略梯度方法能够处理复杂且高维的决策空间,例如在游戏、机器人控制、自动驾驶等领域取得了突破性的进展。
1.3 研究意义
策略梯度方法的重要性在于它提供了一种灵活的框架ÿ