强化学习算法:策略梯度 (Policy Gradient) 原理与代码实例讲解

强化学习算法:策略梯度(Policy Gradient)原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:强化学习,策略梯度,深度学习,深度 Q 网络,蒙特卡洛方法,优势函数

1. 背景介绍

1.1 问题的由来

强化学习(Reinforcement Learning,RL)是机器学习的一个分支,它关注于如何通过与环境互动来学习行为,以达到特定的目标。在强化学习中,学习者通过与环境交互来学习如何选择行动,以最大化累积奖励。策略梯度方法是强化学习中的一类算法,它关注于直接优化决策过程的策略,而不是学习状态价值或动作价值。

1.2 研究现状

随着深度学习的兴起,策略梯度方法得到了极大的发展,尤其是通过引入深度神经网络来近似策略函数。这使得策略梯度方法能够处理复杂且高维的决策空间,例如在游戏、机器人控制、自动驾驶等领域取得了突破性的进展。

1.3 研究意义

策略梯度方法的重要性在于它提供了一种灵活的框架ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值