从RAG到Agent的转变:多轮对话:与用户进行更深入的互动

从RAG到Agent的转变:多轮对话:与用户进行更深入的互动

关键词:多轮对话,RAG,阅读理解,Agent,人机交互,自然语言处理,深度学习

1. 背景介绍

1.1 问题的由来

随着人工智能技术的飞速发展,自然语言处理(NLP)领域的对话系统逐渐成为人们关注的焦点。从简单的问答系统到复杂的聊天机器人,对话系统正逐步改变着人们的生活和工作方式。然而,现有的对话系统往往存在一些问题,如对话流程单一、缺乏上下文理解能力、难以进行多轮交互等。为了解决这些问题,研究人员提出了从RAG(Retrieval-Augmented Generation)到Agent的转变,即通过增强阅读理解能力,使对话系统能够进行更深入的互动。

1.2 研究现状

近年来,基于RAG的对话系统在多轮对话方面取得了显著进展。RAG结合了检索技术和生成技术,通过检索相关文档,为生成对话内容提供支持。然而,RAG系统在处理复杂、多轮对话时,往往存在上下文理解不足、对话连贯性差等问题。为了解决这些问题,研究人员开始探索从RAG到Agent的转变,即构建具备更强阅读理解能力和自主决策能力的对话Agent。

1.3 研究意义

从RAG到Agent的转变,有助于提升对话系统的对话质量、用户体验和实际应用价值。具体来说,其研究意义体现在以下几个方面:

  1. 提升对话质量:通过增强阅读理解能力,对话Agent能够更好地
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI架构师小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值