从RAG到Agent的转变:多轮对话:与用户进行更深入的互动
关键词:多轮对话,RAG,阅读理解,Agent,人机交互,自然语言处理,深度学习
1. 背景介绍
1.1 问题的由来
随着人工智能技术的飞速发展,自然语言处理(NLP)领域的对话系统逐渐成为人们关注的焦点。从简单的问答系统到复杂的聊天机器人,对话系统正逐步改变着人们的生活和工作方式。然而,现有的对话系统往往存在一些问题,如对话流程单一、缺乏上下文理解能力、难以进行多轮交互等。为了解决这些问题,研究人员提出了从RAG(Retrieval-Augmented Generation)到Agent的转变,即通过增强阅读理解能力,使对话系统能够进行更深入的互动。
1.2 研究现状
近年来,基于RAG的对话系统在多轮对话方面取得了显著进展。RAG结合了检索技术和生成技术,通过检索相关文档,为生成对话内容提供支持。然而,RAG系统在处理复杂、多轮对话时,往往存在上下文理解不足、对话连贯性差等问题。为了解决这些问题,研究人员开始探索从RAG到Agent的转变,即构建具备更强阅读理解能力和自主决策能力的对话Agent。
1.3 研究意义
从RAG到Agent的转变,有助于提升对话系统的对话质量、用户体验和实际应用价值。具体来说,其研究意义体现在以下几个方面:
- 提升对话质量:通过增强阅读理解能力,对话Agent能够更好地