AI博弈算法大比拼:Minimax vs Alpha-Beta剪枝
关键词:Minimax算法、Alpha-Beta剪枝、博弈树、极大极小策略、人工智能游戏AI、剪枝优化、决策树搜索
摘要:在人工智能的博弈领域,Minimax算法是解决双人零和博弈的经典策略,而Alpha-Beta剪枝则是其核心优化技术。本文将通过“井字棋”的趣味故事,用小学生都能听懂的语言,逐步拆解这两种算法的原理、区别和实战应用。你将看到:Minimax如何模拟“全知视角”的决策过程?Alpha-Beta剪枝如何像“聪明侦探”一样跳过无效选择?最后我们会用Python代码实战对比两者效率,揭示剪枝技术为何能让AI在复杂棋类(如国际象棋、围棋)中“算得更快、看得更远”。
背景介绍
目的和范围
你是否好奇过:电脑下围棋/象棋时,是怎么“思考”下一步的?为什么有些AI下棋又快又准,有些却慢得像“卡机”?本文将聚焦双人零和博弈(如井字棋、象棋、围棋)中的核心算法——Minimax与Alpha-Beta剪枝,解释它们的工作原理、优化逻辑,并通过代码实战验证剪枝的威力。
预期读者
- 对人工智能、游戏开发感兴趣的中学生/大学生
- 想了解“机器如何做决策”的技术爱好者
- 计划开发游戏AI的初级程序员