一文读懂Anchor-Free目标检测:CenterNet原理与代码实现
关键词:Anchor-Free、目标检测、CenterNet、关键点检测、热力图回归
摘要:传统Anchor-Based目标检测方法(如YOLO、Faster R-CNN)依赖人工设计的Anchor框,存在调参复杂、计算量大等问题。本文将带您走进Anchor-Free目标检测的经典之作——CenterNet,用“找披萨中心”的故事类比核心原理,结合代码实现与实战案例,从原理到落地一步讲透。无论您是刚入门的AI新手,还是想优化检测模型的工程师,都能通过本文掌握CenterNet的核心逻辑。
背景介绍
目的和范围
目标检测是计算机视觉的核心任务(如自动驾驶识别行人、安防监控追踪目标),传统方法依赖大量预设Anchor框(类似“提前在图片上画格子”),但存在两大痛点:
- 调参复杂:Anchor的尺寸、比例需人工经验设定,不同数据集效果差异大;
- 计算冗余:需计算Anchor与真实框的交并比(IoU),浪费算力。
本文聚焦Anchor-Free的代表算法CenterNet,讲解其“无Anchor、直接回归目标中心”的创新思路,覆盖原理、数学模型、代码实现及实战应用。