C++与FastMCP高效并行实战

基于C++和FastMCP

以下是一些基于C++和FastMCP(假设指高性能计算或多核处理相关库)的实用示例,涵盖不同应用场景。由于FastMCP并非标准库,以下示例假设其功能类似于多线程、并行计算或特定领域的加速库。


并行数组求和

使用多线程对大型数组进行分块求和:

#include <vector>
#include <thread>
#include <numeric>

void parallel_sum(const std::vector<int>& data, int start, int end, int& result) {
    result = std::accumulate(data.begin() + start, data.begin() + end, 0);
}

int main() {
    std::vector<int> data(1000000, 1); // 1百万个1
    int num_threads = 4;
    std::vector<std::thread> threads;
    std::vector<int> partial_results(num_threads, 0);

    for (int i =  0; i < num_threads; ++i) {
        int start = i * data.size() / num_threads;
        int end = (i + 1) * data.size() / num_threads;
        threads.emplace_back(parallel_sum, std::ref(data), start, end, std::ref(partial_results[i]));
    }

    for (auto& t : threads) t.join();
    int total = std::accumulate(partial_results.begin(), partial_results.end(), 0);
    return 0;
}

矩阵乘法优化

分块矩阵乘法提升缓存利用率:

const int BLOCK_SIZE = 32;
void block_matrix_multiply(float* A, float* B, float* C, int N) {
    for (int i = 0; i < N; i += BLOCK_SIZE)
        for (int j = 0; j < N; j += BLOCK_SIZE)
            for (int k = 0; k < N; k += BLOCK_SIZE)
                for (int ii = i; ii < i + BLOCK_SIZE; ++ii)
                    for (int jj = j; jj < j + BLOCK_SIZE; ++jj)
                        for (int kk = k; kk < k + BLOCK_SIZE; ++kk)
                            C[ii*N + jj] += A[ii*N + kk] * B[kk*N + jj];
}

快速排序并行化

使用C++17的并行算法:

#include <algorithm>
#include <execution>
#include <vector>

int main() {
    std::vector<int> data = {...};
    std::sort(std::execution::par, data.begin(), data.end());
    return 0;
}

蒙特卡洛模拟

并行计算Pi值:

#include <random>
#include <future>
#include <iostream>

double monte_carlo_pi(int samples) {
    std::mt19937 gen(std::random_device{}());
    std::uniform_real_distribution<> dis(0.0, 1.0);
    int hits = 0;
    for (int i = 0; i < samples; ++i) {
        double x = dis(gen), y = dis(gen);
        if (x*x + y*y <= 1) hits++;
    }
    return 4.0 * hits / samples;
}

int main() {
    auto f1 = std::async(std::launch::async, monte_carlo_pi, 1000000);
    auto f2 = std::async(std::launch::async, monte_carlo_pi, 1000000);
    std::cout << (f1.get() + f2.get()) / 2;
}

图像处理卷积

SIMD优化卷积运算:

#include <immintrin.h> // AVX指令集

void convolve_avx(float* input, float* output, float* kernel, int width, int height) {
    for (int y = 1; y < height - 1; ++y) {
        for (int x = 1; x < width - 1; x += 8) { // 每次处理8个像素
            __m256 sum = _mm256_setzero_ps();
            for (int ky = -1; ky <= 1; ++ky) {
                for (int kx = -1; kx <= 1; ++kx) {
                    __m256 pix = _mm256_loadu_ps(&input[(y+ky)*width + x+kx]);
                    __m256 kern = _mm256_set1_ps(kernel[(ky+1)*3 + (kx+1)]);
                    sum = _mm256_fmadd_ps(pix, kern, sum);
                }
            }
            _mm256_storeu_ps(&output[y*width + x], sum);
        }
    }
}

哈希表并发访问

使用TBB库的并发哈希表:

#include <tbb/concurrent_hash_map.h>

tbb::concurrent_hash_map<int, std::string> table;

void insert_data(int key, const std::string& value) {
    tbb::concurrent_hash_map<int, std::string>::accessor acc;
    table.insert(acc, key);
    acc->second = value;
}

数值积分

并行梯形法积分:

#include <cmath>
#include <future>

double integrate(double a, double b, int n, double (*f)(double)) {
    double h = (b - a) / n;
    double sum = 0.5 * (f(a) + f(b));
    for (int i = 1; i < n; ++i) sum += f(a + i * h);
    return sum * h;
}

int main() {
    auto f1 = std::async(integrate, 0, 1, 500000, std::sin);
    auto f2 = std::async(int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KENYCHEN奉孝

您的鼓励是我的进步源泉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值