基于C++和FastMCP
以下是一些基于C++和FastMCP(假设指高性能计算或多核处理相关库)的实用示例,涵盖不同应用场景。由于FastMCP并非标准库,以下示例假设其功能类似于多线程、并行计算或特定领域的加速库。
并行数组求和
使用多线程对大型数组进行分块求和:
#include <vector>
#include <thread>
#include <numeric>
void parallel_sum(const std::vector<int>& data, int start, int end, int& result) {
result = std::accumulate(data.begin() + start, data.begin() + end, 0);
}
int main() {
std::vector<int> data(1000000, 1); // 1百万个1
int num_threads = 4;
std::vector<std::thread> threads;
std::vector<int> partial_results(num_threads, 0);
for (int i = 0; i < num_threads; ++i) {
int start = i * data.size() / num_threads;
int end = (i + 1) * data.size() / num_threads;
threads.emplace_back(parallel_sum, std::ref(data), start, end, std::ref(partial_results[i]));
}
for (auto& t : threads) t.join();
int total = std::accumulate(partial_results.begin(), partial_results.end(), 0);
return 0;
}
矩阵乘法优化
分块矩阵乘法提升缓存利用率:
const int BLOCK_SIZE = 32;
void block_matrix_multiply(float* A, float* B, float* C, int N) {
for (int i = 0; i < N; i += BLOCK_SIZE)
for (int j = 0; j < N; j += BLOCK_SIZE)
for (int k = 0; k < N; k += BLOCK_SIZE)
for (int ii = i; ii < i + BLOCK_SIZE; ++ii)
for (int jj = j; jj < j + BLOCK_SIZE; ++jj)
for (int kk = k; kk < k + BLOCK_SIZE; ++kk)
C[ii*N + jj] += A[ii*N + kk] * B[kk*N + jj];
}
快速排序并行化
使用C++17的并行算法:
#include <algorithm>
#include <execution>
#include <vector>
int main() {
std::vector<int> data = {...};
std::sort(std::execution::par, data.begin(), data.end());
return 0;
}
蒙特卡洛模拟
并行计算Pi值:
#include <random>
#include <future>
#include <iostream>
double monte_carlo_pi(int samples) {
std::mt19937 gen(std::random_device{}());
std::uniform_real_distribution<> dis(0.0, 1.0);
int hits = 0;
for (int i = 0; i < samples; ++i) {
double x = dis(gen), y = dis(gen);
if (x*x + y*y <= 1) hits++;
}
return 4.0 * hits / samples;
}
int main() {
auto f1 = std::async(std::launch::async, monte_carlo_pi, 1000000);
auto f2 = std::async(std::launch::async, monte_carlo_pi, 1000000);
std::cout << (f1.get() + f2.get()) / 2;
}
图像处理卷积
SIMD优化卷积运算:
#include <immintrin.h> // AVX指令集
void convolve_avx(float* input, float* output, float* kernel, int width, int height) {
for (int y = 1; y < height - 1; ++y) {
for (int x = 1; x < width - 1; x += 8) { // 每次处理8个像素
__m256 sum = _mm256_setzero_ps();
for (int ky = -1; ky <= 1; ++ky) {
for (int kx = -1; kx <= 1; ++kx) {
__m256 pix = _mm256_loadu_ps(&input[(y+ky)*width + x+kx]);
__m256 kern = _mm256_set1_ps(kernel[(ky+1)*3 + (kx+1)]);
sum = _mm256_fmadd_ps(pix, kern, sum);
}
}
_mm256_storeu_ps(&output[y*width + x], sum);
}
}
}
哈希表并发访问
使用TBB库的并发哈希表:
#include <tbb/concurrent_hash_map.h>
tbb::concurrent_hash_map<int, std::string> table;
void insert_data(int key, const std::string& value) {
tbb::concurrent_hash_map<int, std::string>::accessor acc;
table.insert(acc, key);
acc->second = value;
}
数值积分
并行梯形法积分:
#include <cmath>
#include <future>
double integrate(double a, double b, int n, double (*f)(double)) {
double h = (b - a) / n;
double sum = 0.5 * (f(a) + f(b));
for (int i = 1; i < n; ++i) sum += f(a + i * h);
return sum * h;
}
int main() {
auto f1 = std::async(integrate, 0, 1, 500000, std::sin);
auto f2 = std::async(int