(15-5)langchain模型I/O与数据增强:使用大型语言模型(LLMs)

大型语言模型(LLMs)是一类基于深度学习技术的强大自然语言处理模型,它们在近年来在自然语言处理领域取得了巨大的成功和影响。这些模型以巨大的数据集作为训练基础,通过深度神经网络结构来学习语言的复杂模式和规律,从而实现了在各种自然语言处理任务上的优异性能。

3.5.1  LLMs介绍

随着大型语言模型(LLMs)的兴起,信息提取应用程序的能力也在不断增强。传统的信息提取解决方案往往依赖于人工制定的规则(例如正则表达式)、大量手工制定的规则和定制的精细调整的ML模型。这些系统随着时间的推移变得越来越复杂,维护成本逐渐增加,增强困难。

相比之下,LLMs可以通过提供适当的指令和适当的参考示例,快速适应特定的提取任务。它们不仅可以执行语言生成任务,还可以用于信息提取工作。具体来说,LLMs的意义如下所示。

  1. 定制化:自定义LLM可以根据特定的需求进行定制,使得信息提取过程更加灵活和可控。通过定义适当的指令和参考示例,可以使LLMs执行特定的提取任务。
  2. 降低开发成本:使用自定义LLM可以减少开发成本。相比于传统的信息提取解决方案,定制LLMs不需要大量的手工制定的规则或定制的ML模型。这降低了开发和维护的成本。
  3. 提高效率:自定义LLM可以根据指定的规则和参考示例快速进行调整,从而提高信息提取的效率。与传统的信息提取解决
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值