大型语言模型(LLMs)是一类基于深度学习技术的强大自然语言处理模型,它们在近年来在自然语言处理领域取得了巨大的成功和影响。这些模型以巨大的数据集作为训练基础,通过深度神经网络结构来学习语言的复杂模式和规律,从而实现了在各种自然语言处理任务上的优异性能。
3.5.1 LLMs介绍
随着大型语言模型(LLMs)的兴起,信息提取应用程序的能力也在不断增强。传统的信息提取解决方案往往依赖于人工制定的规则(例如正则表达式)、大量手工制定的规则和定制的精细调整的ML模型。这些系统随着时间的推移变得越来越复杂,维护成本逐渐增加,增强困难。
相比之下,LLMs可以通过提供适当的指令和适当的参考示例,快速适应特定的提取任务。它们不仅可以执行语言生成任务,还可以用于信息提取工作。具体来说,LLMs的意义如下所示。
- 定制化:自定义LLM可以根据特定的需求进行定制,使得信息提取过程更加灵活和可控。通过定义适当的指令和参考示例,可以使LLMs执行特定的提取任务。
- 降低开发成本:使用自定义LLM可以减少开发成本。相比于传统的信息提取解决方案,定制LLMs不需要大量的手工制定的规则或定制的ML模型。这降低了开发和维护的成本。
- 提高效率:自定义LLM可以根据指定的规则和参考示例快速进行调整,从而提高信息提取的效率。与传统的信息提取解决