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Abstract
We describe a practical path-planning algorithm that gener-
ates smooth paths for an autonomous vehicle operating in an
unknown environment, where obstacles are detected online
by the robot’s sensors. This work was motivated by and ex-
perimentally validated in the 2007 DARPA Urban Challenge,
where robotic vehicles had to autonomously navigate park-
ing lots. Our approach has two main steps. The first step uses
a variant of the well-known A* search algorithm, applied to
the 3D kinematic state space of the vehicle, but with a modi-
fied state-update rule that captures the continuous state of the
vehicle in the discrete nodes of A* (thus guaranteeing kine-
matic feasibility of the path). The second step then improves
the quality of the solution via numeric non-linear optimiza-
tion, leading to a local (and frequently global) optimum. The
path-planning algorithm described in this paper was used by
the Stanford Racing Teams robot, Junior, in the Urban Chal-
lenge. Junior demonstrated flawless performance in complex
general path-planning tasks such as navigating parking lots
and executing U-turns on blocked roads, with typical full-
cycle replaning times of 50–300ms.

Introduction and Related Work
We address the problem of path planning for an autonomous
vehicle operating in an unknown environment. We as-
sume the robot has adequate sensing and localization ca-
pability and must replan online while incrementally build-
ing an obstacle map. This scenario was motivated, in part,
by the DARPA Urban Challenge, in which vehicles had to
freely navigate parking lots. The path-planning algorithm
described below was used by the Stanford Racing Team’s
robot, Junior in the Urban Challenge (DARPA 2007). Ju-
nior (Figure 1) demonstrated flawless performance in com-
plex general path-planning tasks—many involving driving
in reverse—such as navigating parking lots, executing U-
turns, and dealing with blocked roads and intersections with
typical full-cycle replanning times of 50–300ms on a mod-
ern PC.

One of the main challenges in developing a practical path
planner for free navigation zones arises from the fact that the
space of all robot controls—and hence trajectories—is con-
tinuous, leading to a complex continuous-variable optimiza-
tion landscape. Much of prior work on search algorithms for
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Figure 1: Junior, our entry in the DARPA Urban Challenge,
was used in all experiments. Junior is equipped with sev-
eral LIDAR and RADAR units, and a high-accuracy inertial
measurement system.

path planning (Ersson and Hu 2001; Koenig and Likhachev
2002; Ferguson and Stentz 2005; Nash et al. 2007) yields
fast algorithms for discrete state spaces, but those algorithms
tend to produce paths that are non-smooth and do not gen-
erally satisfy the non-holonomic constraints of the vehicle.
An alternative approach that guarantees kinematic feasibil-
ity is forward search in continuous coordinates, e.g., using
rapidly exploring random trees (RRTs) (Kavraki et al. 1996;
LaValle 1998; Plaku, Kavraki, and Vardi 2007). The key
to making such continuous search algorithms practical for
online implementations lies in an efficient guiding heuristic.
Another approach is to directly formulate the path-planning
problem as a non-linear optimization problem in the space of
controls or parametrized curves (Cremean et al. 2006), but
in practice guaranteeing fast convergence of such programs
is difficult due to local minima.

Our algorithm builds on the existing work discussed
above, and consists of two main phases. The first step uses
a heuristic search in continuous coordinates that guarantees
kinematic feasibility of computed trajectories. While lack-
ing theoretical optimality guarantees, in practice this first



Figure 2: Graphical comparison of search algorithms. Left:
A* associates costs with centers of cells and only visits
states that correspond to grid-cell centers. Center: Field
D* (Ferguson and Stentz 2005) and Theta* (Nash et al.
2007) associate costs with cell corners and allow arbitrary
linear paths from cell to cell. Right: Hybrid A* associates
a continuous state with each cell and the score of the cell is
the cost of its associated continuous state.

step typically produces a trajectory that lies in a neighbor-
hood of the global optimum. The second step uses conjugate
gradient (CG) descent to locally improve the quality of the
solution, producing a path that is at least locally optimal, but
usually attains the global optimum as well.

Another practical challenge is the design of a cost func-
tion over paths that yields the desired driving behavior. The
difficulty stems from the fact that we would like to obtain
paths that are near-optimal in length, but at the same time
are smooth and keep a comfortable distance to obstacles. A
common way of penalizing proximity to obstacles is to use
a potential field (Andrews and Hogan 1983; Khatib 1986;
Pavlov and Voronin 1984; Miyazaki and Arimoto 1985).
However, as has been observed by many researchers (Tilove
1990; Koren and Borenstein 1991), one of the drawbacks
of potential fields is that they create high-potential areas in
narrow passages, thereby making those passages effectively
untraversable. To address this issues, we introduce a po-
tential that rescales the field based on the geometry of the
workspace, allowing precise navigation in narrow passages
while also effectively pushing the robot away from obstacles
in wider-open areas.

Hybrid-State A* Search
The first phase of our approach uses a variant of the well-
known A* algorithm applied to the 3D kinematic state space
of the vehicle, but with a modified state-update rule that cap-
tures continuous-state data in the discrete search nodes of
A*. Just as in conventional A*, the search space (x, y, θ)
is discretized, but unlike traditional A* which only allows
visiting centers of cells, our hybrid-state A* associates with
each grid cell a continuous 3D state of the vehicle, as illus-
trated in Figure 2.

As noted above, our hybrid-state A* is not guaranteed
to find the minimal-cost solution, due to its merging of
continuous-coordinate states that occupy the same cell in the
discretized space. However, the resulting path is guaranteed
to be drivable (rather than being piecewise-linear as in the
case of standard A*). Also, in practice, the hybrid-A* so-
lution typically lies in the neighborhood of the global opti-
mum, allowing us to frequently arrive at the globally optimal
solution via the second phase of our algorithm (which uses

gradient descent to locally improve the path, as described
below).

The main advantage of hybrid-state A* manifests itself
in maneuvers in tight spaces, where the discretization errors
become critical.

Our algorithm plans forward and reverse motion, with
penalties for driving in reverse as well as switching the di-
rection of motion.
Heuristics Our search algorithm is guided by two heuristics,
illustrated in Figure 3. These heuristics do not rely on any
properties of hybrid-state A* and are also applicable to other
search methods (e.g., discrete A*).

The first heuristic—which we call “non-holonomic-
without-obstacles”—ignores obstacles but takes into ac-
count the non-holonomic nature of the car. To compute it,
we assume a goal state of (xg, yg, θg) = (0, 0, 0) and com-
pute the shortest path to the goal from every point (x, y, θ) in
some discretized neighborhood of the goal, assuming com-
plete absence of obstacles.1 Clearly, this cost is an admis-
sible heuristic. We then use a max of the non-holonomic-
without-obstacles cost and 2D Euclidean distance as our
heuristic. The effect of this heuristic is that it prunes search
branches that approach the goal with the wrong headings.
Notice that because this heuristic does not depend on run-
time sensor information, it can be fully pre-computed of-
fline and then simply translated and rotated to match the cur-
rent goal. In our experiments in real driving scenarios, this
heuristic provided close to an order-of-magnitude improve-
ment in the number of nodes expanded over the straightfor-
ward 2D Euclidean-distance cost.

The second heuristic is a dual of the first in that it ignores
the non-holonomic nature of the car, but uses the obstacle
map to compute the shortest distance to the goal by perform-
ing dynamic programming in 2D. The benefit of this heuris-
tic is that it discovers all U-shaped obstacles and dead-ends
in 2D and then guides the more expensive 3D search away
from these areas.

Both heuristics are mathematically admissible in the A*
sense, so the maximum of the two can be used.
Analytic Expansions The forward search described above
uses a discretized space of control actions (steering). This
means that the search will never reach the exact continuous-
coordinate goal state (the accuracy depends on the resolution
of the grid in A*). To address this precision issue, and to
further improve search speed, we augment the search with
analytic expansions based on the Reed-Shepp model (Reeds
and Shepp 1990). In the search described above, a node in
the tree is expanded by simulating a kinematic model of the
car—using a particular control action—for a small period of
time (corresponding to the resolution of the grid).

In addition to children generated in such a way, for some
nodes, an additional child is generated by computing an op-
timal Reed-and-Shepp path from the current state to the goal
(assuming an obstacle-free environment). The Reed-and-
Shepp path is then checked for collisions against the cur-
rent obstacle map, and the children node is only added to

1We used a 160x160 grid with 1m resolution in x-y and 5◦

angular resolution.
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Figure 3: A* heuristics. Euclidean distance in 2D expands
21, 515 nodes (a). The non-holonomic-without-obstacles
heuristic is a significant improvement: it expands 1, 465
nodes in (b), but can lead to wasteful exploration of dead-
ends in more complex settings: 68, 730 nodes in (c). This
is rectified by using the latter in conjunction with the
holonomic-with-obstacles heuristic: 10, 588 nodes in (d).

the tree if the path is collision-free. For computational rea-
sons, it is not desirable to apply the Reed-Shepp expansion
to every node (especially far from the goal, where most such
paths are likely to go through obstacles). In our implementa-
tion, we used a simple selection rule, where the Reed-Shepp
expansion is applied to one of every N nodes, where N de-
creases as a function of the cost-to-goal heuristic (leading
to more frequent analytic expansions as we get closer to the
goal).

A search tree with the Reed-Shepp expansion is shown in
Figure 4. The search tree generated by the short incremen-
tal expansion of nodes is shown in the yellow-green color
range, and the Reed-Shepp expansions is shown as the sin-
gle purple line leading to the goal. We found that this ana-
lytic extension of the search tree leads to significant benefits
in both accuracy and planning time.

Path-Cost Function Using the Voronoi Field
We use the following potential field, which we call the
Voronoi Field, to define the trade off between path length
and proximity to obstacles. The Voronoi Field is defined as
follows:

ρV (x, y) =
( α

α + dO(x, y)

)( dV(x, y)
dO(x, y) + dV(x, y)

)
(dO − dmax

O )2

(dmax
O )2

,

(1)

where dO and dV are the distances to the nearest obstacle
and the edge of the Generalized Voronoi Diagram (GVD),

Figure 4: Analytic Reed-and-Shepp expansion. The search-
tree branches corresponding to short incremental expansions
are shown in the yellow-green color range, and the Reed-
Shepp path is the purple segment leading towards the goal.
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Figure 5: (a) Voronoi field in a simulated parking lot. (b)
The corresponding Voronoi diagram. (c) A standard poten-
tial field with high-potential regions in narrow passages.

respectively, and α > 0, dO > 0 are constants that con-
trol the falloff rate and the maximum effective range of the
field. The expression in (1) is for dO ≤ dmax

O ; otherwise,
ρV (x, y) = 0.

This potential has the following properties: i) it is zero
when dO ≥ dmax

O ; ii) ρV (x, y) ∈ [0, 1] and is continuous
on (x, y) since we cannot simultaneously have dO = dV =
0; iii) it reaches its maximum only within obstacles. iv) it
reaches its minimum only on the edges of the GVD.

The key advantage of the Voronoi field over a conven-
tional potential fields is the fact that the field value is scaled
in proportion to the total available clearance for navigation.
As a result, even narrow openings remain navigable, which
is not always the case for standard potential fields.

Figure 5 illustrates this property. Figure 5a shows the 2D
projection of the Voronoi field, and Figure 5b gives the cor-
responding generalized Voronoi diagram. Notice that nar-
row passages between obstacles that are close to each other
are not blocked off by the potential, and there is always a
continuous ρV = 0 path between them. Compare this to a
naı̈ve potential field ρ(x, y) = α(α + dO(x, y))−1 shown in
Figure 5c, which has high-potential regions in narrow pas-



Figure 6: Voronoi Field and a trajectory driven by Junior in
a real parking lot.

sages between obstacles.
Figure 6 shows the Voronoi Field and a driven trajectory

for a real parking lot.
We should note that the use of Voronoi diagrams and po-

tential fields has long been proposed in the context of robot
motion planning. For example, Voronoi diagrams can be
used to derive skeletonizations of the free space (Choset
and Burdick 2000). However, navigating along the Voronoi
graph is not possible for a non-holonomic car.

Navigation functions (Koditschek 1987; Rimon and
Koditschek 1992) and Laplace potentials (Connolly, Burns,
and Weiss 1990) are also similar to our Voronoi Field in
that they construct potential functions free of local minima
for global navigation. We do not use the Voronoi Field for
global navigation. However, we observe that for workspaces
with convex obstacles, the Voronoi Field can be augmented
with a global attractive potential, yielding a field that has no
local minima and is therefore suitable for global navigation.

Local Optimization and Smoothing

The paths produced by hybrid-state A* are often still sub-
optimal and worthy of further improvement. Empirically,
we find that such paths are drivable, but can contain unnat-
ural swerves that require unnecessary steering. We there-
fore post-process the hybrid-state A* solution by applying
the following two-stage optimization procedure. In the first
stage, we formulate a non-linear optimization program on
the coordinates of the vertices of the path that improves the
length and smoothness of the solution. The second stage
performs non-parametric interpolation using another itera-
tion of conjugate gradient with higher-resolution path dis-
cretization.

Given a sequence of vertices xi = (xi, yi), i ∈ [1, N ],
we define several quantities: oi, the location of the obstacle
nearest to the vertex; ∆xi = xi − xi−1, the displacement
vector at the vertex; ∆φi = | tan−1 ∆yi+1

∆xi+1
−tan−1 ∆yi

∆xi
|, the

change in the tangential angle at the vertex. The objective

Figure 7: Hybrid-A* and CG paths for a complicated
maneuver, which involves reversing into a parking spot.
Hybrid-state A path (red), and the conjugate-gradient solu-
tion (blue).

function is:

wρ

N∑
i=1

ρV (xi, yi) + wo

N∑
i=1

σo (|xi − oi| − dmax) +

wκ

N−1∑
i=1

σκ

(
∆φi

|∆xi|
− κmax

)
+ ws

N−1∑
i=1

(∆xi+1 −∆xi)2,

where ρV is the Voronoi field; κmax is the maximum al-
lowable curvature of the path (defined by the turning radius
of the car), and σo and σκ are penalty functions (empiri-
cally, we found simple quadratic penalties to work well);
wρ, wo, wκ, ws are weights.

The first term of the cost function effectively guides the
robot away from obstacles in both narrow and wide pas-
sages. The second term penalizes collisions with obstacles.
The third term upper-bounds the instantaneous curvature of
the trajectory at every node and enforces the non-holonomic
constraints of the vehicle. The fourth term is a measure of
the smoothness of the path.

The gradient of the above cost function is computed
in a straightforward manner as described below. For the
Voronoi-field term, we have when dO ≤ dmax

O :

∂ρV

∂xi
=

∂ρV

∂dO

∂dO
∂xi

+
∂ρV

∂dV

∂dV
∂xi

,

∂dO
∂xi

=
xi − oi

|xi − oi|
,

∂dV
∂xi

=
xi − vi

|xi − vi|
,

∂ρV

∂dV
=

α

α + dO

(dO − dmax
O )2

(dmax
O )2

dO
(dO + dV)2

,

∂ρV

∂dO
=

α

α + dO

dV
dO + dV

(dO − dmax
O )

(dmax
O )2[

−(dO − dmax
O )

α + dO
− dO − dmax

O
dO + dV

+ 2
]

,
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Figure 8: Interpolation of the CG path. The input path is
shown in (a), the result of the interpolation is shown in (b).
The planned paths of both the front and the rear axles are
shown.

where vi is a 2D vector of coordinates of the point on the
edge of the Generalized Voronoi Diagram (GVD) that is
closest to vertex i. We compute the nearest obstacle oi and
the nearest GVD-edge point vi by maintaining a kd-tree of
all obstacle points and GVD-edge points and updating the
nearest neighbors of vertices at every iteration of conjugate
gradient.

For the collision penalty with a quadratic σo, we have if
|xi − oi| ≤ dmax:

∂σo

∂xi
= 2(|xi − oi| − dmax)

xi − oi

|xi − oi|
.

For the maximum-curvature term at vertex i, we have to
take the derivatives with respect to the three points that af-
fect the curvature at point i: i − 1, i, and i + 1. For this
computation, the change in the tangential angle at node i is
best expressed as

∆φi = cos−1 ∆xT
i ∆xi+1

|∆xi||∆xi+1|
, (2)

and the derivatives of the curvature κi = ∆φi/|∆xi| with
respect to the coordinates of the three nodes are then:

∂κi

∂xi
= − 1

|∆xi|
∂∆φi

∂ cos(∆φi)
∂ cos(∆φi)

∂xi
− ∆φi

(∆xi)2
∂∆xi

∂xi
,

∂κi

∂xi−1
= − 1

|∆xi|
∂∆φi

∂ cos(∆φi)
∂ cos(∆φi)

∂xi−1
− ∆φi

(∆xi)2
∂∆xi

∂xi−1
,

∂κi

∂xi+1
= − 1

|∆xi|
∂∆φi

∂ cos(∆φi)
∂ cos(∆φi)

∂xi+1
,

where
∂∆φi

∂ cos(∆φi)
=

∂ cos−1(cos(∆φi)
∂ cos(∆φi)

=
−1

(1− cos2(∆φi))1/2
.

The derivative of cos(∆φi) with respect to the coordinates
of the three vertices is easiest expressed in terms of orthog-
onal complements:

a ⊥ b = a− aT b
|b|

b
|b|

. (3)

Introducing the following normalized orthogonal comple-
ments:

p1 =
xi ⊥ (−xi+1)
|xi||xi+1|

; p2 =
(−xi+1) ⊥ xi

|xi||xi+1|
, (4)

we can then express the derivatives as:

∂ cos(∆φi)
∂xi

= −p1 − p2;

∂ cos(∆φi)
∂xi−1

= p2;
∂ cos(∆φi)

∂xi+1
= p1.

(5)

Figure 7 shows the effect of the second optimization and
smoothing step: the red line is the A* solution, and the blue
line is the path obtained by CG optimization.

Using the CG smoothing described above, we obtain a
path that is much smoother than the A* solution, but it is
still piecewise linear, with a significant distance between
vertices (around 0.5m–1m in our implementation). This can
lead to very abrupt steering on a physical vehicle. Therefore,
we further smooth the path using interpolation between the
vertices of the CG solution. Many parametric interpolation
techniques are very sensitive to noise in the input and exac-
erbate any such noise in the output (e.g., cubic splines can
lead to arbitrarily large oscillations in the output as input
vertices get closer to each other).

We therefore use non-parametric interpolation, where we
super-sample the path by adding new vertices, and using CG
to minimize curvature of the path, while holding the original
vertices fixed. The result of interpolating the path in Fig-
ure 8a is shown in Figure 8b.

Results
Figure 9 depicts several trajectories driven by Junior in the
DARPA Urban Challenge. Figure 9a–c show U-turns on
blocked roads, Figure 9d shows a task involving navigation
in a parking lot.

A solution to a more complex maze-like environment
computed in simulation is shown in Figure 10. A video
showing the robot replanning as it incrementally detects ob-
stacles and builds an obstacle map in scenario of Figure 10
is available at http://ai.stanford.edu/ ddolgov/gpp maze.avi .

We used the following parameters for our planner: the
obstacle map was of size 160m×160m with 0.15cm resolu-
tion; A* used a grid of size 160m×160m×360◦ with 0.5m
x-y resolution and 5◦ resolution for the heading θ. Typical
running times for a full replanning cycle involving the hy-
brid A* search, CG smoothing, and interpolation were on
the order of 50–300ms.
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Figure 9: Examples of trajectories generated by our planner and driven by Junior (Figure 1) in the DARPA Urban Challenge.
(a) and (b) show U-turns on blocked roads; (c) shows a parking task.

Figure 10: The shown path was generated in simulation.
Note that in all cases the robot had to replan in response
to obstacles being detected by its sensors (via a simulated
planar rangefinder); this explains the sub-optimality of the
trajectory. A video of this planning problem is available at:
http://robot.cc/gpp maze.avi
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