SpringBoot整合LangChain4j实战指南!

在Spring Boot中整合LangChain4j操作AI大模型,可以通过以下步骤实现。这里以整合OpenAI的GPT模型为例:
在这里插入图片描述

  1. 创建Spring Boot项目
    使用Spring Initializr创建项目,选择以下依赖:

Spring Web

Lombok(可选,简化代码)

  1. 添加LangChain4j依赖
    在pom.xml中添加依赖(检查最新版本):
dev.langchain4j langchain4j-open-ai 0.25.0 3. 配置OpenAI API密钥 在application.properties中配置:

langchain4j.openai.api-key=${OPENAI_API_KEY}
langchain4j.openai.model-name=gpt-3.5-turbo
langchain4j.openai.temperature=0.7
langchain4j.openai.timeout=60
或通过环境变量设置OPENAI_API_KEY。

  1. 创建LangChain4j配置类
    @Configuration
    public class LangChain4jConfig {

    @Value(“${langchain4j.openai.api-key}”)
    private String apiKey;

    @Bean
    public OpenAiChatModel openAiChatModel() {
    return OpenAiChatModel.builder()
    .apiKey(apiKey)
    .modelName(“gpt-3.5-turbo”)
    .temperature(0.7)
    .timeout(Duration.ofSeconds(60))
    .build();
    }
    }

  2. 定义AI服务接口
    使用@SystemMessage或@UserMessage注解定义功能:

import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.V;

public interface TranslationService {

@SystemMessage("你是一个专业翻译,将输入翻译成法语。")
String translateToFrench(@UserMessage String text);

}
6. 创建服务层并调用AI模型
使用AiServices创建接口实现:

@Service
public class TranslationServiceImpl {

private final TranslationService translationService;

public TranslationServiceImpl(OpenAiChatModel chatModel) {
    this.translationService = AiServices.create(TranslationService.class, chatModel);
}

public String translate(String text) {
    return translationService.translateToFrench(text);
}

}
7. 创建REST控制器
@RestController
@RequestMapping(“/api/ai”)
public class AIController {

private final TranslationServiceImpl translationService;

public AIController(TranslationServiceImpl translationService) {
    this.translationService = translationService;
}

@GetMapping("/translate")
public ResponseEntity<String> translateText(@RequestParam String text) {
    String translated = translationService.translate(text);
    return ResponseEntity.ok(translated);
}

}

  1. 测试API
    启动应用后,通过curl或Postman测试:

curl http://localhost:8080/api/ai/translate?text=Hello,世界!
9. 高级功能示例
使用文档检索

// 1. 加载文档
Document document = FileSystemDocumentLoader.loadDocument(“path/to/file.txt”);

// 2. 创建Embedding模型和检索器
EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel();
EmbeddingStore embeddingStore = new InMemoryEmbeddingStore<>();

// 3. 分割文档并存储
DocumentSplitter splitter = new DocumentBySentenceSplitter();
List segments = splitter.split(document);
List embeddings = embeddingModel.embedAll(segments).content();
embeddingStore.addAll(embeddings, segments);

// 4. 创建检索链
RetrievalChain retriever = RetrievalChain.builder()
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.build();

// 5. 使用检索结果增强AI回答
String answer = AiServices.builder(Assistant.class)
.chatLanguageModel(chatModel)
.retrievalChain(retriever)
.build()
.ask(“基于文档回答:问题内容”);
10. 处理异常
添加全局异常处理:

@RestControllerAdvice
public class GlobalExceptionHandler {

@ExceptionHandler(OpenAiHttpException.class)
public ResponseEntity<String> handleOpenAiError(OpenAiHttpException ex) {
    return ResponseEntity.status(ex.statusCode()).body(ex.getMessage());
}

}
注意事项
API成本控制:设置合理的maxTokens限制,避免长文本高费用。

超时设置:根据网络情况调整timeout。

本地模型:如需使用本地模型(如HuggingFace),替换OpenAiChatModel为LocalChatModel。

敏感信息:切勿将API密钥提交到代码仓库,使用环境变量或配置中心。

速率限制:处理OpenAI的速率限制错误(429),添加重试逻辑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值