🚀🚀🚀本文改进:Focaler-IoU更加聚焦的IoU损失Focaler-IoU,能够在不同的检测任务中聚焦不同的回归样本,使用线性区间映射的方法来重构IoU损失
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等
⭐⭐⭐ 2024年计算机视觉顶会创新点适用于Yolov5、Yolov8、Yolov10等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!
⭐⭐⭐重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️