🚀🚀🚀本文内容:BiFormer中的查询感知稀疏注意力旨在让每个查询聚焦于top-k路由区域。然而,在计算注意力时,选定的键值对受到太多无关查询的影响,减弱了对更重要查询的注意力。;
为解决这些问题,我们提出了可变形双级路由注意力(DBRA)模块,该模块使用代理查询优化键值对的选择,并增强了注意力图中查询的解释性。
1)作为注意力可变形双级路由注意力(DBRA)模块使用;
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、25年最新顶会改进思路、原创自研paper级创新等
⭐⭐⭐ 2025年计算机视觉顶会创新点适用于Yolov5、Yolov8、Yolov10、Yolo11等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!