A、B两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log
现在要求把A、B 机器中的access.log、nginx.log、web.log 采集汇总到C机器上然后统一收集到hdfs中,并且在hdfs中输出的目录指定为:
/source/logs/access/20180101/**
/source/logs/nginx/20180101/**
/source/logs/web/20180101/**
场景图
数据流程处理图
服务器A对应的IP为 192.168.100.201
服务器B对应的IP为 192.168.100.202
服务器C对应的IP为 192.168.100.203
采集端配置文件
hadoop01与hadoop02服务器开发flume的配置文件
cd /export/servers/apache-flume-1.8.0-bin/tmpconf
vim exec_source_avro_sink.conf
# Name the components on this agent
a1.sources = r1 r2 r3
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/taillogs/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access
a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /home/taillogs/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx
a1.sources.r3.type = exec
a1.sources.r3.command = tail -F /home/taillogs/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop03
a1.sinks.k1.port = 41414
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1
注:
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access
服务端配置文件
在hadoop03上面开发flume配置文件
cd /export/servers/apache-flume-1.8.0-bin/tmpconf
vim avro_source_hdfs_sink.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#定义source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.100.203
a1.sources.r1.port =41414
#添加时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
#定义channels
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
#定义sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=hdfs://192.168.100.201:8020/source/logs/%{type}/%Y%m%d
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
采集端文件生成脚本
在hadoop01与hadoop02上面开发shell脚本,模拟数据生成
cd /home
vim server.sh
#!/bin/bash
while true
do
date >> /home/taillogs/access.log;
date >> /home/taillogs/web.log;
date >> /home/taillogs/nginx.log;
sleep 0.5;
done
顺序启动服务
hadoop03启动flume实现数据收集
cd /export/servers/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f tmpconf/avro_source_hdfs_sink.conf -name a1 -Dflume.root.logger=DEBUG,console
node01与node02启动flume实现数据监控
cd /export/servers/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f tmpconf/exec_source_avro_sink.conf -name a1 -Dflume.root.logger=DEBUG,console
hadoop01与hadoop02启动生成文件脚本
cd /home
sh server.sh
运行效果:
[root@hadoop03 ~]# hadoop fs -ls /source/logs
Found 3 items
drwxrwxrwx - root supergroup 0 2019-12-05 17:07 /source/logs/access
drwxrwxrwx - root supergroup 0 2019-12-05 17:07 /source/logs/nginx
drwxrwxrwx - root supergroup 0 2019-12-05 17:07 /source/logs/web
[root@hadoop03 ~]# hadoop fs -lsr /source/logs/access
lsr: DEPRECATED: Please use 'ls -R' instead.
drwxrwxrwx - root supergroup 0 2019-12-05 17:08 /source/logs/access/20191205
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820842
-rw-r--r-- 2 root supergroup 755 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820843
-rw-r--r-- 2 root supergroup 755 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820844
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820845
-rw-r--r-- 2 root supergroup 755 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820846
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820847
-rw-r--r-- 2 root supergroup 775 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820848
-rw-r--r-- 2 root supergroup 755 2019-12-05 17:07 /source/logs/access/20191205/FlumeData.1575536820849
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:08 /source/logs/access/20191205/FlumeData.1575536820850
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:08 /source/logs/access/20191205/FlumeData.1575536820851
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:08 /source/logs/access/20191205/FlumeData.1575536820852
-rw-r--r-- 2 root supergroup 735 2019-12-05 17:08 /source/logs/access/20191205/FlumeData.1575536820853.tmp
[root@hadoop03 ~]#