成功解决Python报错:TypeError: init() got an unexpected keyword argument ‘n_iterations’
🧑 博主简介:阿里巴巴嵌入式技术专家,深耕嵌入式+人工智能领域,具备多年的嵌入式硬件产品研发管理经验。
📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向的学习指导、简历面试辅导、技术架构设计优化、开发外包等服务,有需要可加文末联系方式联系。
💬 博主粉丝群介绍:① 群内高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。
目录
问题背景
TypeError: __init__() got an unexpected keyword argument 'n_iterations'
错误表明在初始化一个对象时使用了一个未被定义的关键字参数。在 Python 中,当你调用一个类的构造函数(__init__
方法)并传递了一个该类不接受的关键字参数时,会触发此错误。
示例代码与详细报错内容
假设你在尝试初始化 sklearn.ensemble.RandomForestClassifier
时遇到了这个问题:
错误示例代码:
from sklearn.ensemble import RandomForestClassifier
# 假设错误地使用了 n_iterations 参数
model = RandomForestClassifier(n_iterations=100)
完整报错内容:
TypeError: __init__() got an unexpected keyword argument 'n_iterations'
解决方案
1. 检查引用类的文档
首先,检查引用类的官方文档,确认其构造方法接受的参数。
以 RandomForestClassifier
为例,可以查阅 scikit-learn文档。
示例:
class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)
2. 使用正确的参数
阅读文档后,使用正确的参数名称。如上文所述,RandomForestClassifier
构造函数接受 n_estimators
参数而不是 n_iterations
。
错误示例:
from sklearn.ensemble import RandomForestClassifier
# 错误地使用了 n_iterations 参数
model = RandomForestClassifier(n_iterations=100)
解决方法:
from sklearn.ensemble import RandomForestClassifier
# 正确使用 n_estimators 参数
model = RandomForestClassifier(n_estimators=100)
3. 检查是否引用了自定义类
有时你可能会无意中引用了自己定义的类。请检查你是否正确导入了所需的类。
示例:
# 错误地定义了一个类,并传递了不被接受的参数
class MyModel:
def __init__(self, param1):
self.param1 = param1
# 使用未被定义的 n_iterations 参数
model = MyModel(n_iterations=100)
解决方法:
修改定义类的构造函数以接受正确的参数,或者确保使用正确的参数名:
修改类定义:
class MyModel:
def __init__(self, n_iterations):
self.n_iterations = n_iterations
model = MyModel(n_iterations=100)
示例与应用
我们通过具体的示例展示解决方案。
示例 1:检查引用类的文档
错误示例:
from sklearn.ensemble import RandomForestClassifier
# 错误地使用了 n_iterations 参数
model = RandomForestClassifier(n_iterations=100)
正确示例:
from sklearn.ensemble import RandomForestClassifier
# 正确使用 n_estimators 参数
model = RandomForestClassifier(n_estimators=100)
示例 2:检查是否引用了自定义类
错误示例:
# 自定义类并使用未定义的参数
class MyModel:
def __init__(self, param1):
self.param1 = param1
model = MyModel(n_iterations=100)
正确示例:
修改类定义,使其接受正确的参数:
class MyModel:
def __init__(self, n_iterations):
self.n_iterations = n_iterations
model = MyModel(n_iterations=100)
示例 3:确保使用正确的参数名
错误示例:
from sklearn.linear_model import LogisticRegression
# 假设错误地使用了 n_iterations 参数
model = LogisticRegression(n_iterations=100)
正确示例:
检查并使用正确的参数名称:
from sklearn.linear_model import LogisticRegression
# 正确使用 max_iter 参数
model = LogisticRegression(max_iter=100)
总结
TypeError: __init__() got an unexpected keyword argument 'n_iterations'
错误通常是由于传递了类构造函数未定义的关键字参数导致的。通过检查文档或帮助信息,确认并使用正确的参数名可以解决这个问题。如果你有自定义的类,也要确保类构造函数定义的参数与实际调用中使用的参数一致。
希望本文对你理解和解决 TypeError: __init__() got an unexpected keyword argument 'n_iterations'
错误有所帮助。如果你有任何问题或建议,欢迎在评论区留言讨论!