本篇博客小菌为大家带来的是MapReduce的自定义分区与ReduceTask内容的分享(ReduceMap具体计算流程见《MapReduce中shuffle阶段概述及计算任务流程》)。
在MapReduce中。通过指定分区,会将同一个分区的数据发送到同一个reduce中,例如为了数据的统计,可以把一批类似的数据发 送到同一个reduce当中去,在同一个reduce中统计相同类型的数据,就可以实现类似数据的分区,统计等。
直观的说就是相同类型的数据,送到一起去处理,在reduce当中默认分区只有1个。
MapReduce当中的分区类图
假设现在有个业务需求,有一个文本文件partition.txt。其中第六个字段表示开奖结果数值,现在以15为分界点,将15以上的结果保存到一个文件,15以下的结果保存到一个文件。
那我们应该怎么做呢?
按照正常的思维,我们应该先创建两个目录,在Map中拿到数据后,把开奖结果数值作为key,整行数据作为value传递给reduce,然后reduce再根据key值大小做出一个判断,把list数据存入到不同的目录中…
虽然步骤没有错,但总归有些繁琐。事实上,MapReduce中的分区机制就可以很好的解决这个问题!
先让我们来看下MapReduce自带的默认分区算法:
对key 进行哈希,获取到一个哈希值,用这个哈希值与reducetask的数量取余。余几,这个数据就放在余数编号的partition中。
但很明显上面提到的问题最终是根据数值大小进行分区,所以这个分区算法并不适用,所以我们需要自定义分区!
自定义分区的步骤见下:
第一步:定义mapper
这里的mapper程序不做任何逻辑,也不对key,与value做任何改变,只是接收数据,然后往下发送。
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class MyMapper extends Mapper<LongWritable,Text,Text, NullWritable>{
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value,NullWritable.get());