MapReduce的自定义分区与ReduceTask数量

本文介绍了如何在MapReduce中自定义分区,通过示例解释了如何根据业务需求,如开奖结果数值,来决定数据流向不同的ReduceTask。通过自定义Partitioner,实现了根据数值大小进行分区,简化了原本在Mapper和Reducer中处理的逻辑。同时强调了设置分区类和ReduceTask数量的一致性对于分区有效性的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        本篇博客小菌为大家带来的是MapReduce的自定义分区与ReduceTask内容的分享(ReduceMap具体计算流程见《MapReduce中shuffle阶段概述及计算任务流程》)。

        在MapReduce中。通过指定分区,会将同一个分区的数据发送到同一个reduce中,例如为了数据的统计,可以把一批类似的数据发 送到同一个reduce当中去,在同一个reduce中统计相同类型的数据,就可以实现类似数据的分区,统计等。
        直观的说就是相同类型的数据,送到一起去处理,在reduce当中默认分区只有1个。

        MapReduce当中的分区类图
在这里插入图片描述
        假设现在有个业务需求,有一个文本文件partition.txt。其中第六个字段表示开奖结果数值,现在以15为分界点,将15以上的结果保存到一个文件,15以下的结果保存到一个文件。

v
        那我们应该怎么做呢?
        按照正常的思维,我们应该先创建两个目录,在Map中拿到数据后,把开奖结果数值作为key,整行数据作为value传递给reduce,然后reduce再根据key值大小做出一个判断,把list数据存入到不同的目录中…

        虽然步骤没有错,但总归有些繁琐。事实上,MapReduce中的分区机制就可以很好的解决这个问题!

        先让我们来看下MapReduce自带的默认分区算法:

        对key 进行哈希,获取到一个哈希值,用这个哈希值与reducetask的数量取余。余几,这个数据就放在余数编号的partition中。

        但很明显上面提到的问题最终是根据数值大小进行分区,所以这个分区算法并不适用,所以我们需要自定义分区!

        自定义分区的步骤见下:

第一步:定义mapper

        这里的mapper程序不做任何逻辑,也不对key,与value做任何改变,只是接收数据,然后往下发送。

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;


public class MyMapper extends Mapper<LongWritable,Text,Text, NullWritable>{
   
   
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
   
        context.write(value,NullWritable.get());
    
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据梦想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值