MapReduce的逻辑切分split与合并combiner

本文深入解析MapReduce中split逻辑切分原理与combiner组件作用,揭示如何通过合理配置优化数据处理流程,减少网络IO,提升计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在之前的博客《MapReduce中shuffle阶段概述及计算任务流程》,小菌为大家分享了MapReduce的整体计算任务流程以及shuffle阶段主要的作用。本篇博客小菌将针对MapReduce流程中的第2步——split逻辑切分与第7步——合并做一个知识面的拓展。

Split的逻辑切分

        在MapReduce任务流程中第一步获取到数据后,split对数据进行逻辑切分,切分的大小是128M。这里的128 与 HDFS 数据块的128 没有任何关系。
        HDFS 128 是存储层面的数据,split 128 是计算层面的 128, 只不过数据恰好相等
        两个128 相同的原因是,一个集成程序能够正好计算一个数据块!

在这里插入图片描述

MapReduce的combiner

        每一个 map 都可能会产生大量的本地输出,Combiner 的作用就是对map 端的输出先做一次合并,以减少在 map 和 reduce 节点之间的数据传输量,以提高网络IO 性能,是 MapReduce 的一种优化手段之一。

        combiner 是 MR 程序中 Mapper 和 Reducer 之外的一种组件,组件的父类就是 Reducer

        combiner 和 reducer 的区别在于运行的位置:
        Combiner 是在每一个 maptask 所在的节点运行
        Reducer 是接收全局所有 Mapper 的输出结果;

        combiner 的意义就是对每一个 maptask 的输出进行局部汇总,以减小网络传输量

        让我们通过两张图来看下未使用combiner和使用combiner的网络开销的大致情况!

        未使用combiner的网络开销
在这里插入图片描述
        使用combiner的网络开销
在这里插入图片描述
        可以很明显的看出在combiner阶段,通过合并同一个区中相同key的value值,减小了后续的数据传输,从而提高了网络的io!

        但在MapReduce中,combiner是默认不开启的。为什么呢?是因为数据合并并不适用所有的业务需求,如果是计算个数,求和combiner还能发挥它的优势!但如果是求平均数,combiner必不可免的会影响到最终的结果,使结果变得不可靠!所以当我们需要到combiner时,需要手动开启。

具体实现步骤:
1、自定义一个 combiner 继承 Reducer,重写 reduce 方法
2、在 job 中设置: job.setCombinerClass(CustomCombiner.class)

        combiner 能够应用的前提是不能影响最终的业务逻辑。而且,combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来。

        本次的分享就到这里了,大家有什么疑惑或者好的建议可以在评论区积极留言。受益的小伙伴们不要忘了点赞关注小菌哟~~







在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据梦想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值