关于weaviate的关键词和向量搜索优劣

模式搜索逻辑适合场景
向量搜索语义匹配,靠向量距离表达相似但用词不同(如同义句)
关键词搜索字面匹配,靠关键词命中用户输入的是“关键词”或短语

举例对比:

记忆内容:

“Java 架构师的名字是 Tom。”

用户查询:
  1. “谁是架构师?”
    → 向量搜索能命中(意思接近)
    → 关键词搜索完全没命中

  2. “Tom” / “架构师” / “Java”
    → 关键词能命中(文本含词)
    → 向量搜索反而未必命中(向量分数太低)


为什么“向量可能搜不到关键词命中内容”?

因为向量搜索是“语义空间”的距离:

  • 如果用户输入的词非常简短或抽象(如“好”、“人名”、“单字”)

  • 或者模型 embedding 不够准确

  • 或者你用了 certainty > 0.85 做了剪枝

就会出现:语义向量搜不到,字面却包含关键词的情况


关键词 fallback 就是为这种“精确小词匹配”兜底设计的

  • 向量搜索负责“语义相关”

  • 关键词搜索负责“精确命中”

两者结合:即使 embedding 模型不够完美、内容风格多变,也能最大限度保证记忆被找回来。

### Weaviate 向量查询测试 要在 Dify 中执行 Weaviate向量查询测试,可以按照以下方式操作: #### 配置环境 首先,确认已安装并运行 Docker Flask 工具链。如果尚未完成 Milvus 数据库的迁移,则需先通过 `docker exec` 命令启动迁移过程[^2]。 #### 连接 Weaviate 客户端 为了实现与 Weaviate 数据库交互的功能,需要引入官方 Python SDK 并初始化客户端实例: ```python import weaviate client = weaviate.Client( url="http://localhost:8080", # 替换为实际部署地址 ) ``` 上述代码片段用于创建一个连接到本地运行的 Weaviate 实例的客户端对象[^3]。 #### 构建查询语句 构建基于近邻搜索 (Nearest Neighbor Search) 的查询逻辑如下所示: ```python near_text_query = { "concepts": ["目标概念"], # 插入具体关键词列表 } response = ( client.query.get("ClassName", ["property_name"]) # 更改类名及属性名称 .with_near_text(near_text_query) .with_limit(5) # 返回前五个最相似的结果 .do() ) print(response) ``` 此脚本定义了一个简单的文本相似度匹配请求,并限制返回最多五条记录作为输出[^4]。 #### 测试验证 最后一步是调用 API 接口发送 HTTP 请求来触发整个流程。可以通过 Postman 或 cURL 等工具手动模拟提交 JSON 负载包;或者直接扩展现有业务模块集成自动化功能支持动态参数传递机制从而简化日常维护工作负担。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值