【有营养的算法笔记】基础算法 —— 整数二分与浮点二分

本文介绍了二分算法的基本概念和两种常见的模板:整数二分和浮点二分。通过详细分析模板的适用场景和逻辑,帮助读者理解和掌握如何在实际问题中应用二分算法。同时,文中提供了数的范围和三次方根问题的实例,加深对二分算法的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👑作者主页:@安 度 因
🏠学习社区:StackFrame
📖专栏链接:有营养的算法笔记

如果无聊的话,就来逛逛 我的博客栈 吧! 🌹

二分算法有时是一个很玄乎的算法,有时稀里糊涂就对了,有时不是死循环就是查找错误。其实就是边界问题处理不当,所以对于二分来说,很有必要有一定的模板,帮助我们快速解决问题。
今天,我们将围绕整数二分和浮点二分进行讲解。

一、铺垫

概念:二分算法,就是在一段 单调且有序 的区间中通过某些条件,不断对二分的起始边界和结束边界进行调整。从而让区间不断压缩,直至找出二分答案,在每次二分后,区间或多或少都会改变。

二分对于我们来说应该是不陌生的。二分查找 大家应该都听说过,这其实就是二分的一层演变拓展,变为更加精确的查找某些值。

概念部分对 单调性 略有提及。其实对于二分算法,区间具有单调性一定可以二分但是二分的题目不一定有单调性

对于二分算法来说,二分是一定会找到答案的。因为二分不断压缩区间,最后必定会分出一个值。

但是这个答案仅仅是对于二分这个算法求出的答案。答案是否正确,还是要结合题目判断。简约的说就是二分的答案不一定是题目的答案,但是二分一定会有答案,无解是对于问题的

有了这些 铺垫 ,我们再看板子。

二、整数二分模板分析

整数二分有两个板子,这也是我觉得最好的板子,简洁,清晰明了。

我们的两个板子二分的最终结果为 边界值

模板1:区间 [l, r] 被划分成 [l, mid][mid + 1, r] 时使用

bool check(double x) {/* ... */} // 检查x是否满足某种性质

int binarySearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}

模板2:区间 [l, r] 被划分成 [l, mid - 1][mid, r] 时使用

int binarySearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

这里的 check(mid) 函数是为了判断每次二分取的 中间点 mid 是否满足特定性质,从而对区间进行 正确压缩

接下来,我们对两个板子进行分析

模板1

假定一段区间单调递增,区间最左端为 l,区间最右端为 r,区间中点:mid = (l + r) / 2

image-20221209003526121

对于 模板 1二分找的是 蓝色区间的左边界点

mid 可能出现在两个区间中。 check(mid) 检查 mid 是否在 蓝色区间 中。

  1. mid 所在区间为 蓝色区间

此时 check(mid) ,答案在 [l, mid] 区间内。这里取 mid 的原因是查找的是蓝色左端点,mid 在蓝色区间,mid 可能就 是答案 。由于查找的是 左端点 ,所以其他 大于 mid 的情况就 不可能 了。调整 r = mid缩短右边,在左边找答案

  1. mid 所在区间为 红色区间

此时 check(mid) ,答案在 [mid + 1, r] 区间内。这里不取 mid 的原因是查找的是蓝色左端点,mid 在红色区间,所以答案肯定不会落在 mid 上,只有 mid + 1有可能 。调整 l = mid + 1缩短左边,在右边找答案

区间划分情况为 [l, mid][mid + 1, r]

模板 2

假定一段区间单调递增,区间最左端为 l,区间最右端为 r,区间中点:mid = (l + r + 1) / 2(这里为什么这么取中点我们先不关心,马上会讲解)

image-20221209013951407

对于 模板 2二分找的是 红色区间的右边界点

mid 可能出现在两个区间中。check(mid) 检查 mid 是否在 红色区间 中。

  1. mid 所在区间为 红色区间

此时 check(mid) ,答案在 [mid, r] 区间内。mid 在红色区间中,答案 可能取到 mid ,所以区间包含 mid。由于查找的是 右端点,所以小于 mid 的无需考虑。调整 l = mid缩短左边,在右边查找答案

  1. mid 所在区间 蓝色区间

此时 check(mid) ,答案在 [l, mid - 1] 区间内。mid 在蓝色区间中,答案不可能取到 mid,所以区间不包含 mid ,只有 mid - 1有可能 。右边的区间都不需要考虑了。调整 r = mid - 1缩短右边,在左边查找答案

区间划分情况为 [l, mid - 1][mid, r]


讲到这,我们对二分的情况有一些了解后,我们解答一下,为什么 模板 2mid = (l + r + 1) / 2

/ 是下取整的,如果 l = r - 1 ,二分取中点 mid 时,mid = (l + r) / 2 = (l + l + 1) / 2 = l

一旦 check(mid) 满足,那么 l = mid,由于 mid = l,那么 l 就被调整为了 l ,相当于没变,这就 死循环 了。+1 就可以避免掉这种情况。


总结一下 :模板 1 找 区间左边界点,模板 2 找 区间右边界点

image-20221209093441239

例如模板1在上图中找的就是 第一个 3,左端点 ;模板2找的是 最后一个3,右端点

三、模板应用 —— 数的范围

描述

给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。

对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。

如果数组中不存在该元素,则返回 -1 -1

输入格式

第一行包含整数 nq,表示数组长度和询问个数。

第二行包含 n 个整数(均在 1 ∼ 10000 范围内),表示完整数组。

接下来 q 行,每行包含一个整数 k,表示一个询问元素。

输出格式

q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1

数据范围

1 ≤ n ≤ 100000
1 ≤ q ≤ 10000
1 ≤ k ≤ 10000

输入样例

6 3
1 2 2 3 3 4
3
4
5

输出样例

3 4
5 5
-1 -1

思路

这道题就是模板的经典应用,例如查找的是这样一段区间:

image-20221209093441239

我们查找的是 3 出现的范围,那么返回的就是 3 出现位置的 左端点右端点

这就很简单了,左端点就套用模板1,右端点套用模板2。

需要注意的就是 二分结果是否正确 的判断,以及 check(mid) 的写法。

并且二分结束时,l 是必定等于 r的,所以到时候输出 lr 任意一个即可。

小技巧:如果拿捏不准该使用哪个模板,那么就现根据题意写出 check 后的区间调整状况,根据这个选择模板。

让我们看看代码怎么写:

image-20221209095131989

AC,没问题

四、浮点二分模板分析

相较于整数二分,浮点二分更加简单:

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double binarySearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

浮点二分 不需要 考虑 向上取整向下取整

对于浮点二分来说,调整区间的时候甚至不需要 +1 或 -1。因为是浮点数,+1, -1就可能会错过答案,所以让其等于 mid 自行调整即可。

接下来写道浮点二分题目来练练手。

五、模板应用 —— 数的三次方根

描述

给定一个浮点数 n ,求它的三次方根。

输入格式

共一行,包含一个浮点数 n

输出格式

共一行,包含一个浮点数,表示问题的解。

注意,结果保留 6 位小数。

数据范围:

−10000 ≤ n ≤ 10000

输入样例

1000.00

输出样例

10.000000

思路

数据范围为 [-10000, 10000],所以左右边界 lr 就给定这个范围。

另外需要考虑一下精度问题,题目要求保留 6 位小数,一般我们总结的规律是这样的:精度总是比输出位数多2位,输出6位小数,那么精度就给8位小数。

这里取中的话 (l + r) / 2必须写成 / 的形式,因为是浮点数,无法使用 >> 操作符,不要用错了。

然后再考虑一下 check 函数写法:

  • 如果 mid^3 >= x,说明答案肯定不在右半区间,到左半区间 [l, mid] 找,r = mid
  • 如果 mid^3 < x,说明答案肯定不在左半区间,到右半区间 [mid, r] 找,l = mid

同理,check 函数也可以写成 mid^3 <= x ,处理情况相似,自己推一下就明白了。

让我们看看代码怎么写:

image-20221209102941953

AC,没问题

到这里,本篇博客就到此结束了。一般情况下,二分的题型是都可以使用今天模板解答的。
所以看懂看明白就很重要,一定要多画图推导和多写。
如果觉得anduin写的还不错的话,还请一键三连!如有错误,还请指正!
我是anduin,一名C语言初学者,我们下期见!

评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安 度 因

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值