【LeetCode53】最大子序和(简单dp)

这篇博客介绍了如何使用动态规划求解数组中最大连续子序列和的问题,详细阐述了状态定义、状态转移方程、初始条件及计算顺序,并提供了具体的代码实现。此外,还列举了LeetCode上的类似背包问题,如0-1背包和完全背包问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

在这里插入图片描述

2.思路

(1)确定状态
状态为dp[i]dp[i]dp[i],表示以nums[i]nums[i]nums[i]为末尾的连续序列的最大和,nums[i]nums[i]nums[i]必须作为连续序列的末尾

(2)状态转移方程
1)这个最大和的连续序列只有一个元素时,即以nums【i】开始,以nums【i】结尾,即最大和为nums【i】。
2)若有多个元素,即从前面某处nums【p】开始(p小于i),一直到nums【i】结尾,即最大和为dp[i−1]+nums[i]dp[i-1]+nums[i]dp[i1]+nums[i]
所以转移方程为dp[i]=max{nums[i]+dp[i−1],nums[i]}dp[i]=max\{ nums[i]+dp[i-1],nums[i] \}dp[i]=max{nums[i]+dp[i1],nums[i]}

(3)初始条件+边界情况
边界为dp[0]=A[0]dp[0]=A[0]dp[0]=A[0]

(4)计算顺序
因为计算dp【i】需要用到dp[i-1]的内容,所以遍历顺序为i从小到大枚举。

3.代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        int dp[n];
        //边界
        dp[0]=nums[0];
        
        for(int i=1;i<nums.size();i++){
            dp[i]=max(dp[i-1]+nums[i],nums[i]);
        }
        //dp[i]存放以A[i]为结尾的连续序列的最大和,需要遍历i得到最大的才是结果
        int k=0;
        for(int i=1;i<n;i++){
            if(dp[i]>dp[k]){
                k=i;
            }
        }
        return dp[k];
    }
};

4.类似题

LeetCode上其他类似的背包问题:
0-1 背包问题
  第 416 题:分割等和子集;
  第 474 题:一和零;
  第 494 题:目标和。
   组合总和IV

完全背包问题如下:
  第 322 题:零钱兑换;
  第 518 题:零钱兑换 II

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值