【LeetCode64】最小路径和(简单dp,注意思路-回溯->记忆化搜索->dp->空间压缩)

本文解析了一道涉及动态规划的难题,通过状态转移方程解决从矩阵起点到右下角的最短路径问题,重点讲解了状态定义、转移规则、初始条件和计算顺序,并展示了如何利用空间压缩优化代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

在这里插入图片描述
在这里插入图片描述

2.思路

(1)确定状态
d p [ i ] [ j ] dp[i][j] dp[i][j]表示从 ( i , j ) (i,j) (i,j)到右下角(终点)的最短路径

(2)转移方程
在这里插入图片描述
(3)初始条件+边界条件
dp[0][0] = grid[0][0]

(4)计算顺序
i和j均从0开始即可。

注意:

超级牛逼题解——也要学学回溯->记忆化搜索->dp->空间压缩)

3.代码

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        m = len(grid) # 行数
        n = len(grid[0]) # 列数
        dp = [[0] * n for k in range(m)]
        dp[0][0] = grid[0][0]
        for i in range(m):
            for j in range(n):
                if i == 0 and j!= 0:# 第一行
                    dp[i][j] = grid[i][j] + dp[i][j - 1]
                elif i != 0 and j == 0: # 第一列
                    dp[i][j] = grid[i][j] + dp[i - 1][j]
                elif i != 0 and j != 0:
                    dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1])
        return dp[m - 1][n - 1]
                            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值