内容速递
(1)候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提取出【视频 Embedding】,从最后一层 ReLU 层得到【用户 Embedding】,然后利用最近邻搜索(如LSH等)快速得到某用户的候选集。这样能够提高模型服务的效率了,不用把模型推断的逻辑搬上服务器,只需要将用户 Embedding 和视频 Embedding 存到redis特征数据库就行了。
(2)排序模型:也是Embedding MLP 架构,但是有更多的用户和视频的特征输入层,输出层采用了 Weighted LR(逻辑回归) 作为输出层(预测是典型CTR),并且使用观看时长作为正样本权重,让模型能够预测出观看时长,这更接近 YouTube 要达成的商业目标。
(3)高效训练模型:作者借鉴了机器翻译中的Sampled Softmax方法, 即利用重要性采样出部分视频 V ′ V^{\prime} V′,更多细节可参考该论文:通过重要性采样几千个负样本;经过importance weighting的方式进行修正。其他解决方法:
- 利用其它的方法,去逼近softmax的概率,比如:基于noise-contrastive estimation (NCE)的方法,类似于word2vec中skip-gram的negative sampling
- 层次softmax