SysRec2016 | Deep Neural Networks for YouTube Recommendations

本文详细介绍了YouTube推荐系统的两大核心部分:召回层和排序层。召回层采用深度神经网络,通过多分类问题的形式,结合用户历史行为和上下文生成候选集。排序层则通过更复杂的模型和特征对候选视频进行精细化排序,以预测观看时长,提高推荐质量。实验表明,特征处理、观看时长的权重以及网络结构的宽度和深度对模型性能有显著影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内容速递

(1)候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提取出【视频 Embedding】,从最后一层 ReLU 层得到【用户 Embedding】,然后利用最近邻搜索(如LSH等)快速得到某用户的候选集。这样能够提高模型服务的效率了,不用把模型推断的逻辑搬上服务器,只需要将用户 Embedding 和视频 Embedding 存到redis特征数据库就行了。

(2)排序模型:也是Embedding MLP 架构,但是有更多的用户和视频的特征输入层,输出层采用了 Weighted LR(逻辑回归) 作为输出层(预测是典型CTR),并且使用观看时长作为正样本权重,让模型能够预测出观看时长,这更接近 YouTube 要达成的商业目标。

(3)高效训练模型:作者借鉴了机器翻译中的Sampled Softmax方法, 即利用重要性采样出部分视频 V ′ V^{\prime} V,更多细节可参考该论文:通过重要性采样几千个负样本;经过importance weighting的方式进行修正。其他解决方法:

  • 利用其它的方法,去逼近softmax的概率,比如:基于noise-contrastive estimation (NCE)的方法,类似于word2vec中skip-gram的negative sampling
  • 层次softmax

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值