【LeetCode1262】 可被三整除的最大和(动态规划)

本文介绍了一种使用动态规划解决特定子集和问题的方法,即寻找数组中能被3整除的最大子集和。文章详细阐述了状态定义、转移方程及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

在这里插入图片描述
提示:
1 <= nums.length <= 4 * 10^4
1 <= nums[i] <= 10^4

二、思路

要从给出的数组中,找到一小坨数满足和能被3整除。dp[i][*]表示在num[i]中,被3整除后的余数为*的最大数(和)。

2.1 确定状态

对于每种状态,有2种选择:选择当前元素;不选择当前元素:

	dp[i][*] = max{dp[i-1][*],dp[i-1][*] + nums[i]}  (* 取值为 0,1,2)

2.2 转移方程

(1)零状态:
dp[k][0]:能够被3整除余0的最大数(和)。
dp[i][0]=max⁡(dp[i−1][0],{dp[i−1][0]+nums[i] nums [i]%3==0dp[i−1][1]+nums[i] nums [i]%3==2dp[i−1][2]+nums[i] nums [i]%3==1) d p[i][0]=\max \left(d p[i-1][0],\left\{\begin{array}{ll} d p[i-1][0]+n u m s[i] & \text { nums }[\mathrm{i}] \% 3==0 \\ d p[i-1][1]+n u m s[i] & \text { nums }[\mathrm{i}] \% 3==2 \\ d p[i-1][2]+n u m s[i] & \text { nums }[\mathrm{i}] \% 3==1 \end{array}\right)\right. dp[i][0]=maxdp[i1][0],dp[i1][0]+nums[i]dp[i1][1]+nums[i]dp[i1][2]+nums[i] nums [i]%3==0 nums [i]%3==2 nums [i]%3==1
(2)一状态:
dp[k][1]:能够被3整除余1的最大数(和)。dp[i][1]=max⁡(dp[i−1][1],{dp[i−1][0]+nums[i],nums%3==1dp[i−1][1]+nums[i],nums[i]%3==0dp[i−1][2]+nums[i],nums[i]%3==2) d p[i][1]=\max \left(d p[i-1][1],\left\{\begin{aligned} d p[i-1][0]+n u m s[i] & \text , { nums } \% 3==1 \\ d p[i-1][1]+n u m s[i] & \text ,{ nums }[i] \% 3==0 \\ d p[i-1][2]+n u m s[i] & \text ,{ nums }[i] \% 3==2 \end{aligned}\right)\right. dp[i][1]=maxdp[i1][1],dp[i1][0]+nums[i]dp[i1][1]+nums[i]dp[i1][2]+nums[i]nums%3==1nums[i]%3==0nums[i]%3==2
(3)三状态:
dp[k][2]:能够被3整除余2的最大数(和)。dp[i][2]=max⁡(dp[i−1][2],{dp[i−1][0]+nums[i]nums⁡[i]%3==2dp[i−1][1]+nums[i] nums [i]%3==1dp[i−1][2]+nums[i] nums [i]%3=0) d p[i][2]=\max \left(d p[i-1][2],\left\{\begin{array}{ll} d p[i-1][0]+n u m s[i] & \operatorname{nums}[\mathrm{i}] \% 3==2 \\ d p[i-1][1]+n u m s[i] & \text { nums }[\mathrm{i}] \% 3==1 \\ d p[i-1][2]+n u m s[i] & \text { nums }[\mathrm{i}] \% 3=0 \end{array}\right)\right. dp[i][2]=maxdp[i1][2],dp[i1][0]+nums[i]dp[i1][1]+nums[i]dp[i1][2]+nums[i]nums[i]%3==2 nums [i]%3==1 nums [i]%3=0

2.3 初始条件+边界

因为当前的状态和前一个状态有关,(我们先将遍历的i从1开始遍历),则其中第0个状态的dp[0][0]表示在nums[0]中,能够被3整除余0的最大数,此时还没遍历到数,dp[0][0] = 0,相当于给数组头添加了0。

还有dp[0][1] = INT_MIN; dp[0][2] = INT_MIN;, 如果设置成0是不符合定义的,dp[0][1]表示的是模三余一,dp[0][2]表示的是模三余二。

这里dp[i][1]dp[i][2]的初始值可以理解为无穷小,因为dp[i][1]dp[i][2]的第一个有意义的初始值可以理解为dp[i-1][0]加上数组当前值nums[i]构成的,又因为每次更新三个状态是通过比较最大值获得的,所以无穷小就被干掉了。

举个例子,假设有一个数组中第一个%3余1的数是4,那么在4出现之前,dp[i][1]就一直是无穷小,不会影响dp[i][0]的更新。只有4出现了,才会用dp[i-1][0] + 4去更新dp[i][1],之后dp[i][1]才会参与dp[i][0]的更新。

2.4 计算顺序

根据递推公式,如dp[i][0]是由dp[i - 1][0]决定的,所以i从小到大顺序遍历。

三、代码

class Solution {
public:
    int maxSumDivThree(vector<int>& nums) {
        int n = nums.size();
        vector<vector<int>> dp(n + 1, vector<int>(3, 0));

        dp[0][0] = 0;
        dp[0][1] = INT_MIN;
        dp[0][2] = INT_MIN;

        for(int i = 1;  i <= n; i++){
            if(nums[i - 1] % 3 == 0){
                dp[i][0] = max(dp[i - 1][0], dp[i - 1][0] + nums[i - 1]);
                dp[i][1] = max(dp[i - 1][1], dp[i - 1][1] + nums[i - 1]);
                dp[i][2] = max(dp[i - 1][2], dp[i - 1][2] + nums[i - 1]);
            }else if(nums[i - 1] % 3 == 1){
                dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] + nums[i - 1]);
                dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + nums[i - 1]);
                dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + nums[i - 1]);
            }else if(nums[i - 1] % 3 == 2){
                dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + nums[i - 1]);
                dp[i][1] = max(dp[i - 1][1], dp[i - 1][2] + nums[i - 1]);
                dp[i][2] = max(dp[i - 1][2], dp[i - 1][0] + nums[i - 1]);
            }
        }
        return dp[n][0];
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值