【LeetCode剑指offer49】丑数(小顶堆或DP)

本文探讨了使用小顶堆和动态规划两种方法解决第k个丑数的问题。小顶堆通过维护丑数组合,避免预存过多数据;动态规划则通过合并有序序列来减少空间复杂度。两种方法各有优劣,适用于不同场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

在这里插入图片描述

二、思路

方法一:小顶堆
求前k大经常用到优先级队列,小顶堆,循环将符合要求的丑数加入小顶堆,取k次堆顶元素即可让堆顶为第k个丑数。而逐个加入丑数即加入2x2x2x3x3x3x5x5x5x进入集合(去重)即可。注意这里加入小顶堆的元素不能是int类型,否则会报错overflow(因为next = temp * factor后可能会越界):

Line 17: Char 33: runtime error: signed integer overflow: 429981696 * 5 cannot be represented in type 'int' (solution.cpp)

三、方法一:小顶堆

class Solution {
public:
    int nthUglyNumber(int n) {
        vector<int> fac = {2, 3, 5};
        //用int还不够
        unordered_set<long>s;
        //注意小顶堆用greater
        priority_queue<long, vector<long>, greater<long>>min_heap;
        s.insert(1L);
        min_heap.push(1L);
        int ugly = 0;
        for(int i = 0; i < n; i++){
            long temp = min_heap.top();
            min_heap.pop();
            ugly = (int)temp;
            for(int factor: fac){
                long next = temp * factor;
                if(!s.count(next)){
                    s.insert(next);
                    min_heap.push(next);
                }       
            }
        }
        return ugly;
    }
};

四、方法二:动态规划

方法二:动态规划
小顶堆会预存较多丑数,维护小顶堆的时间和空间复杂度较高。

简单说就是把所有丑数列出来,然后从小到大排序。而大的丑数必然是小丑数的2/3/5倍,所以有下面这3个数组。每次就从那数组中取出一个最小的丑数归并到目标数组中。

nums2 = {1*2, 2*2, 3*2, 4*2, 5*2, 6*2, 8*2...}
nums3 = {1*3, 2*3, 3*3, 4*3, 5*3, 6*3, 8*3...}
nums5 = {1*5, 2*5, 3*5, 4*5, 5*5, 6*5, 8*5...}
// 注意 7 不是丑数. 
// 2, 3, 5 这前 3 个丑数一定要乘以其它的丑数, 所得的结果才是新的丑数, 所以上例中没有出现 7*2, 7*3, 7*5

现在问题其实转化为合并3个上面这样的有序序列,常规方法即每个序列各维护一个指针,然后每次将最小的元素加入数组中,并且此时要将对应指针后移一个元素,具体根据动态规划的四部曲分析:

(1)确定状态
定义数组 dp[i]dp[i]dp[i],其中 dp[i]dp[i]dp[i] 表示第 i 个丑数,第 n 个丑数即为 dp[n]dp[n]dp[n]

(2)状态转移方程:n大于等于2时:dp[i]=min⁡(dp[p2]×2,dp[p3]×3,dp[p5]×5) d p[i]=\min \left(d p\left[p_{2}\right] \times 2, d p\left[p_{3}\right] \times 3, d p\left[p_{5}\right] \times 5\right) dp[i]=min(dp[p2]×2,dp[p3]×3,dp[p5]×5)

(3)边界+初始条件:最小的丑数是1,dp[1]=1。

(4)计算顺序:从小到大遍历。

class Solution {
public:
    int nthUglyNumber(int n) {
        vector<int>dp(n + 1, 0);
        dp[1] = 1;
        int p2 = 1, p3 = 1, p5 = 1;
        for(int i = 2; i <= n; i++){
            int num2 = dp[p2] * 2, num3 = dp[p3] * 3, num5 = dp[p5] * 5;
            dp[i] = min(min(num2, num3), num5);
            if(dp[i] == num2){
                p2++;
            }
            if(dp[i] == num3){
                p3++;
            }
            if(dp[i] == num5){
                p5++;
            }
        }
        return dp[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值