5分钟搭建企业级AI问答知识库

5分钟搭建企业级AI问答知识库

基础概念

在开始搭建企业级AI问答知识库之前,先来了解一下今天操作过程中用到的三个概念:
概念一:模型在线服务PAI-EAS(Elastic Algorithm Service)是模型在线服务平台,支持用户将模型一键部署为在线推理服务或AI-Web应用。
概念二:Hologres是一站式实时数据仓库引擎,支持海量数据实时写入、实时更新、实时分析,支持标准SQL(兼容PostgreSQL协议),支持PB级数据多维分析(OLAP)与即席分析(Ad Hoc),支持高并发低延迟的在线数据服务(Serving),与MaxCompute、Flink、DataWorks深度融合,提供离在线一体化全栈数仓解决方案。
概念三:计算巢是面向服务商和开发者的一站式软件云化平台,构建云原生SaaS,完成传统软件SaaS化。

部署过程

在对本次部署中涉及到的三个概念有了大概的了解之后,后面在操作上也就更加容易理解了。首先进入到实验平台:https://developer.aliyun.com/adc/scenario/59071ea146484cac892794966414f838?
在这里插入图片描述
选择【个人账号资源】,点击【确认开启实验】
在这里插入图片描述
点击前往【人工智能平台PAI】控制台:https://pai.console.aliyun.com/?spm=a2c6h.13858378.0.0.1c2e4870s6WM9C&regionId=cn-shenzhen#/workspace/overview
如果没有开通机器学习PAI,则需要先开通机器学习PAI并创建默认工作空间
在这里插入图片描述
工作空间创建成功后可以点击【工作空间列表】查看你刚才创建好的工作空间
在这里插入图片描述
下面再继续前往计算巢控制台:https://computenest.console.aliyun.com/?spm=a2c6h.13858378.0.0.1c2e4870s6WM9C
点击【服务目录】,在搜索框中输入并搜索【Hologres+PAI一键部署企业级问答知识库】
在这里插入图片描述
点击【查看详情】进入服务详情页,点击【立即创建】
在这里插入图片描述
在立即创建页面输入示例名称、地域、付费类型
在这里插入图片描述
选择Hologres实例配置、大模型、PAI-EAS模型配置
在这里插入图片描述
继续选择PAI-EAS WebUI配置、VPC配置,其他默认,点击确认订单
在这里插入图片描述
进入到订单详情页面,如果账户余额不足100,需要充值到100后再操作
在这里插入图片描述
创建成功可以在【服务实例】管理页面的【私有部署服务】页签看到创建的部署任务,等待部署3~5分钟,部署成功如图
在这里插入图片描述
点击服务实例名称或者【详情】按钮进入服务详情页面
在这里插入图片描述
在服务实例详情页面,点击endpoint后面的链接
在这里插入图片描述
就可以成功访问知识库
在这里插入图片描述
这里的User、Password对应AccessKey管理页面:https://ram.console.aliyun.com/manage/ak?spm=a2c6h.13858378.0.0.1c2e4870s6WM9C 的AccessKey ID、AccessKey Secret,即
在这里插入图片描述
输入User、 Password后就可以连接Hologres成功,连接成功后上传下载(下载地址:https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20231027/ghdb/example_data.txt?spm=a2c6h.13858378.0.0.1c2e4870s6WM9C&file=example_data.txt ) 好的语料
在这里插入图片描述
然后在聊天页签配置如下参数
在这里插入图片描述
配置完成后在提问框中输入您的问题,并单击提交。例如输入什么是Hologres,返回如图效果
在这里插入图片描述

使用体验

本次基于基于Hologres+PAI+计算巢,5分钟搭建企业级AI问答知识库,整体上操作需要耐心,步骤比较多,操作过程中如果选择不对的话可能导致部署失败。不过整体的部署体验还是很不错的,按照步骤操作没什么部署难度,只是对于参数的配置上需要按照文档操作,目前在聊天页的可选参数也比较有限。另外就是整个部署过程如果没有试用资源的话,会比较费钱,大家在实验结束之后记得自行释放资源,具体的操作在实验文档中,比如在计算巢控制台,在服务实例管理页面的私有部署服务页签下,单击右侧【删除】即可释放服务资源
在这里插入图片描述

<think>嗯,用户想了解如何搭建企业级AI知识库的过程,包括方法、流程和工具。我需要根据提供的引用内容来组织答案。首先,系统级指令要求结构清晰,分步骤回答,还要生成相关问题,并且正确使用LaTeX格式。 首先,我需要回顾引用内容。引用[1]提到了前期准备、技术选型、构建过程及维护。引用[2]强调了对新手的指导,步骤分解。引用[3]提到持续学习和实践的重要性。引用[4]详细介绍了使用Hologres+PAI+计算的快速部署方法,特别是5分钟搭建的案例,但步骤较多需要注意参数配置和资源释放。 接下来,我需要将这些信息整合成搭建流程的步骤。可能分为前期准备、技术选型、构建过程、部署与测试、维护优化这几个部分。在工具方面,引用[4]提到了HologresPAI计算,可能还有其他工具如Milvus、Elasticsearch等,需要结合常见工具进行补充。 要注意每个步骤中的关键点,比如需求分析、数据准备、技术选型中的存储和算法框架选择。在构建过程中,数据预处理可能需要ETL工具,模型训练可能用到TensorFlow或PyTorch。部署部分需要强调计算的一键部署能力,以及资源管理的注意事项。 最后,生成相关问题时要围绕用户可能关心的性能、工具对比、数据安全、维护方法、与现有系统整合等方面提问。确保问题自然且相关,覆盖用户可能的后续疑问。 检查是否遵守了系统指令:使用中文,分步骤结构,正确引用标记,LaTeX格式是否正确(比如公式是否用$或$$包裹),是否生成相关问题,代码块格式是否正确。例如,在模型训练部分可能需要提到数学公式,如准确率公式$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$,确保用$包裹。 确认无误后,组织成用户友好的回答,确保流程清晰,工具部分具体,并附上示例代码和相关问题。</think>### 企业级AI知识库搭建方法与流程 #### 一、前期准备 1. **需求分析** 明确知识库用途(如智能问答、知识检索)、数据来源(内部文档、外部数据库)和目标用户群体(员工、客户)。需定义知识库覆盖范围和智能化程度[^1][^2]。 2. **数据准备** 结构化数据(如数据库表)和非结构化数据(如PDF、文本)需统一清洗,使用ETL工具(如Apache NiFi)进行格式标准化。 $$ \text{数据量} \geq 10^4 \text{条} \text{ 时需考虑分布式存储} $$ #### 二、技术选型 1. **存储与计算工具** - 向量数据库:Milvus、Hologres(支持高维向量检索)[^4] - 全文检索:Elasticsearch - 云服务:阿里云PAI平台、AWS SageMaker 2. **AI框架** - 自然语言处理:Hugging Face Transformers、LangChain - 模型部署:TensorFlow Serving、ONNX Runtime #### 三、构建过程(以Hologres+PAI为例) 1. **数据预处理** ```python # 使用PySpark处理大规模数据 from pyspark.sql import SparkSession spark = SparkSession.builder.appName("ETL").getOrCreate() df = spark.read.csv("knowledge_source/*.csv") ``` 2. **模型训练** 选择预训练模型(如BERT)进行微调,优化目标函数: $$ \mathcal{L}(\theta) = -\sum \log P(y_i|x_i;\theta) $$ 3. **部署流程** - 在计算创建服务实例,配置Hologres连接参数 - 通过PAI加载训练好的问答模型 - 设置API网关提供访问接口 #### 四、维护优化 1. **持续学习机制** 添加增量训练管道,使用主动学习策略选择高价值样本[^3]。 2. **监控指标** 跟踪响应时间$t \leq 500ms$、准确率$Accuracy \geq 0.85$,异常时触发告警。 §§工具推荐§§ | 类型 | 工具示例 | |------------|---------------------------| | 向量数据库 | Milvus, Hologres | | NLP框架 | Hugging Face, spaCy | | 云平台 | 阿里云计算, AWS Bedrock |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

csdn565973850

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值