题意 : 给一个DAG(有向无环图) 有q次操作, 每次操作把一个点变成黑色或者变回来(这些点初始都是白色的),
问每次操作后这个图中起点到终点有路径且这条路径上面的点都是白色的.
思路 : 维护F[u][v],表示u->v的路径条数, 然后对于每次操作更新 F[u][v] -+= F[u][x]*F[x][v], 然后判断F[u][v]是否>0即可, 这样做是对的,但是F[u][v]可能非常大, 要用unsigned long long ,虽然unsigned long long 存不下,但是他有自动取模的功能, 即使是这样也有可能出现F[u][v]之间有路径,但是取模后为0的情况, 但是这个概率是很小的, unsigned long long 已经很大了,取模后出现零的情况应该不会被卡. 复杂度为On^3 所以可以过. 唯一注意的就是上面说的F[u][v] 可能非常大, 用ll 一样会 WA, 只好用unigned ll .
AC Code
#include <bits/stdc++.h>
#define white 0
#define black 1
#define PI acos(-1)
#define CLR(x) memset(x,0,sizeof(x))
using namespace std;
typedef unsigned long long ll; //特别注意要用unsigned long long .
const int maxn = 3e2+5;
ll ans[maxn][maxn];
int e[maxn][maxn];
int color[maxn];
int n,m,q;
void init()
{
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ans[i][j] += ans[i][k] * ans[k][j];
}
}
}
}
void del(int u) //删除操作
{
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ans[i][j] -= ans[i][u] * ans[u][j] ;
}
}
for(int i=1;i<=n;i++){
ans[u][i] = ans[i][u] = 0;
}
}
void add(int u) { //添加操作
for(int i=1; i<=n; i++){
for(int j=1; j<=n; j++){
if(color[i] == white && color[j] == white) {
//看清楚这个是白色的点才让加!!! 删去的点为黑色!
ans[u][i] += e[u][j]*ans[j][i];
ans[i][u] += ans[i][j]*e[j][u];
}
}
}
for(int i=1; i<=n; i++){
if(color[i] == white) {
ans[u][i] += e[u][i];
ans[i][u] += e[i][u];
}
}
//按理说是直接进行这个步骤, 但是由于之前del的影响, ans数组之前的数据已经进行改变了.
//所以必须先进行对ans数组之前还原.
for(int i=1; i<=n; i++){
for(int j=1; j<=n; j++){
if(color[i] == white && color[j] == white)
ans[i][j] += ans[i][u]*ans[u][j];
}
}
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&q)){
CLR(ans); CLR(e); CLR(color);
for(int i=1;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
e[u][v] = 1 ;
ans[u][v] = 1;
}
init();
while(q--){
int t;
scanf("%d",&t);
if(color[t] == white){
color[t] = black;
del(t);
}
else {
color[t] = white;
add(t);
}
int res = 0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(ans[i][j] > 0 && color[i] == white && color[j] == white)
res++;
}
}
printf("%d\n",res);
}
}
}