2017年四川省赛 --- D 题 Dynamic Graph 【 维护路径 】

本文介绍了一种针对有向无环图(DAG)的路径计数算法,该算法能够处理节点状态变化带来的路径数量增减,适用于动态更新场景。通过维护节点间的路径数量,并利用Floyd-Warshall算法进行路径计数的快速更新,有效解决了路径计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址

补题地址

题意 : 给一个DAG(有向无环图) 有q次操作, 每次操作把一个点变成黑色或者变回来(这些点初始都是白色的),
问每次操作后这个图中起点到终点有路径且这条路径上面的点都是白色的.

思路 : 维护F[u][v],表示u->v的路径条数, 然后对于每次操作更新 F[u][v] -+= F[u][x]*F[x][v], 然后判断F[u][v]是否>0即可, 这样做是对的,但是F[u][v]可能非常大, 要用unsigned long long ,虽然unsigned long long 存不下,但是他有自动取模的功能, 即使是这样也有可能出现F[u][v]之间有路径,但是取模后为0的情况, 但是这个概率是很小的, unsigned long long 已经很大了,取模后出现零的情况应该不会被卡. 复杂度为On^3 所以可以过. 唯一注意的就是上面说的F[u][v] 可能非常大, 用ll 一样会 WA, 只好用unigned ll .

AC Code

#include <bits/stdc++.h>
#define white 0
#define black 1
#define PI acos(-1)
#define CLR(x) memset(x,0,sizeof(x))
using namespace std;
typedef unsigned long long ll;  //特别注意要用unsigned long long .
const int maxn = 3e2+5;
ll ans[maxn][maxn];
int e[maxn][maxn];
int color[maxn];
int n,m,q;
void init()
{
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                ans[i][j] += ans[i][k] * ans[k][j];
            }
        }
    }
}

void del(int u)  //删除操作
{
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            ans[i][j] -= ans[i][u] * ans[u][j] ;
        }
    }
    for(int i=1;i<=n;i++){
        ans[u][i] = ans[i][u] = 0;
    }
}
void add(int u) {   //添加操作
     for(int i=1; i<=n; i++){
         for(int j=1; j<=n; j++){
             if(color[i] == white && color[j] == white) {   
             //看清楚这个是白色的点才让加!!! 删去的点为黑色!
                 ans[u][i] += e[u][j]*ans[j][i];
                 ans[i][u] += ans[i][j]*e[j][u];
             }
         }
     }
     for(int i=1; i<=n; i++){
         if(color[i] == white) {
             ans[u][i] += e[u][i];
             ans[i][u] += e[i][u];
         }
     }
    //按理说是直接进行这个步骤, 但是由于之前del的影响, ans数组之前的数据已经进行改变了.
    //所以必须先进行对ans数组之前还原.
     for(int i=1; i<=n; i++){
         for(int j=1; j<=n; j++){
             if(color[i] == white && color[j] == white)
                 ans[i][j] += ans[i][u]*ans[u][j];
         }
     }
}

int main()
{
    while(~scanf("%d%d%d",&n,&m,&q)){
        CLR(ans); CLR(e);  CLR(color);
        for(int i=1;i<=m;i++){
            int u,v;
            scanf("%d%d",&u,&v);
            e[u][v] = 1 ;
            ans[u][v] = 1;
        }
        init();
        while(q--){
            int t;
            scanf("%d",&t);
            if(color[t] == white){
                color[t] = black;
                del(t);
            }
            else {
                color[t] = white;
                add(t);
            }
            int res = 0;
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    if(ans[i][j] > 0 && color[i] == white && color[j] == white)
                        res++;
                }
            }
            printf("%d\n",res);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值