2015 年 蓝桥杯 A 组 C/C++ 第十题 灾后重建 【最小生成树 + LCA倍增 + 线段树维护区间max】

交题地址
详细复杂度做法解释
这是hard版本的.
AC Code

const int maxn = 5e4+5;
const int maxm = 2e5 + 5;
int up[maxn][23], maxx[maxn][23];
int deep[maxn], dis[maxn];
int cnt, head[maxn];
int n, m, q;
struct node {
    int to, next, w;
}e[maxm<<1];
int fa[maxn], r[maxn];
void init() {
    Fill(head,-1); Fill(dis,0);
    Fill(up,0); Fill(deep,0);
    cnt = 0;
    for (int i = 1 ; i <= n ; i ++) {
        fa[i] = i;
        r[i] = 1;
    }
}
int Find(int x) {
    return fa[x] == x ? x : fa[x] = Find(fa[x]);
}
bool Un(int x, int y) {
    int fx = Find(x);
    int fy = Find(y);
    if (fx == fy) return false;
    if (r[fx] < r[fy]) swap(fx, fy);
    fa[fy] = fx;
    r[fx] += r[fy];
    return true;
}
void add(int u, int v, int w) {
    e[cnt] = node{v, head[u], w};
    head[u] = cnt++;
}

void dfs(int u,int fa,int d)
{
    deep
### 蓝桥杯 C/C++及解析 #### 2024 蓝桥杯 C/C++ 部分真解析 对于零食采购问,采用的是 LCA 算法来解决每次查询消耗 logN 的树上差分完整代码[^2]: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; vector<int> G[MAXN]; int dep[MAXN], fa[MAXN][20], dfn[MAXN], siz[MAXN], top[MAXN], son[MAXN], dis[MAXN]; bool vis[MAXN]; void dfs1(int u, int f, int d) { dep[u] = d; fa[u][0] = f; siz[u] = 1; for (auto v : G[u]) { if (v == f) continue; dis[v] = dis[u] + 1; dfs1(v, u, d + 1); siz[u] += siz[v]; if (siz[v] > siz[son[u]]) son[u] = v; } } void dfs2(int u, int t) { dfn[u] = ++dfn[0]; top[u] = t; if (!son[u]) return; dfs2(son[u], t); for (auto v : G[u]) if (v != fa[u][0] && v != son[u]) dfs2(v, v); } inline int lca(int x, int y) { while (top[x] != top[y]) { if (dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]][0]; } return dep[x] < dep[y] ? x : y; } ``` 训练士兵目涉及到较为复杂的逻辑处理,具体实现如下所示: ```cpp struct node { int id, a, b; } p[maxn]; bool cmp(node x, node y) { return x.a * y.b < y.a * x.b || (x.a * y.b == y.a * x.b && x.id < y.id); } int main() { cin >> n; for (int i = 1; i <= n; i++) scanf("%d%d", &p[i].a, &p[i].b), p[i].id = i; sort(p + 1, p + 1 + n, cmp); long long ans = 0; for (int i = 1; i <= n; i++) ans = ((ans % mod) + (((((long long)p[i].a * p[i].b) % mod)) * inv(i))) % mod; cout << ans << endl; return 0; } ``` 成绩统计则利用了二分算法来进行优化,从而降低了时间复杂度。以下是具体的代码实现: ```cpp #include<bits/stdc++.h> #define ll long long using namespace std; ll read(){ ll s=0,w=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();} while('0'<=ch&&ch<='9') s=s*10+ch-'0',ch=getchar(); return w*s; } const int N=1e6+7,M=N<<1; int h[N],to[M],ne[M],idx,n,m,S,T,d[N],q[N],cur[N]; double mid,f[N]; bool st[N]; void add(int a,int b){ ne[++idx]=h[a],to[h[a]=idx]=b; ne[++idx]=h[b],to[h[b]=idx]=a; } bool bfs(double lim){ for(int i=S;i<=T;++i)d[i]=-1,cur[i]=h[i]; d[q[l=r=1]=S]=0; while(l<=r){ int now=q[l++]; for(int i=h[now];~i;i=ne[i]){ if(d[to[i]]==-1&&f[to[i]]>=lim){ q[++r]=to[i]; cur[to[i]]=h[to[i]]; d[to[i]]=d[now]+1; if(to[i]==T)return true; } } } return false; } int dinic(int now,double lim,int flow){ if(now==T||flow==0)return flow; int rest=flow,k; for(int &i=cur[now];~i;i=ne[i]){ if(f[to[i]]>=lim&&d[to[i]]==d[now]+1&&(k=dinic(to[i],lim,min(rest,(int)f[to[i]]))){ f[from[i]]+=k,f[to[i]]-=k,rest-=k; if(!rest)break; } } if(flow==rest)d[now]=-1; return flow-rest; } signed main(){ memset(h,-1,sizeof h); n=read(),m=read(),S=n+m+1,T=n+m+2; for(int i=1;i<=n;++i) add(S,i),scanf("%lf",&f[i]); for(int i=1;i<=m;++i) add(n+i,T),scanf("%lf",&f[n+i]),f[n+i]*=-1; for(int i=1,x,y;i<=read();++i)x=read(),y=read()+n,add(x,y); double l=0,r=1,mid=(l+r)/2; while(r-l>eps){ mid=(l+r)/2; bool flag=false; for(int i=1;i<=n;++i)flag|=dinic(S,mid,inf)>0; flag?l=mid:r=mid; } printf("%.8lf\n",-l); } ``` #### 过往度的真分析 针对过往度的比赛,在某些情况下会使用暴力枚举的方法解决问。例如在寻找特定条件下的数列时可以采取以下方式[^3]: ```cpp void solve(){ init(); int ans,pri; for(int i = 2;i <= 400;i++){ for(int j = 1;j <= prime[0];j++){ ans = search(prime[j],i); if(ans!=-1){ pri = prime[j]; break; } } if(ans!=-1) break; } cout << ans << endl; } ``` 此外还有其他类型的目,比如计算合数量等问也经常出现在比赛中[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值