BZOJ 4919 大根堆【set启发式合并 维护树上LIS】

本文深入探讨了一种特殊场景下的最长递增子序列(LIS)问题,即在点权树中寻找满足特定条件的点集,使得父节点权重大于子节点权重。文章通过实例解释了如何使用multiset进行高效的数据维护,以及启发式合并策略的应用,提供了一段清晰的AC代码作为实现参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门
题意: 对于一颗有点权的树, 如果i是j的祖先, 那么要满足vi > vj, 问最多可以在这棵树上选择多少个点可以满足这个条件.

思路: 那么这就是树上lis,怎么维护了, 每个点依旧像普通数组这样, 那么就有合并, 要合并某个点和儿子的数字, 然后依旧还是g[i]表示lis长度为i时, 最小的a[i]可以是多少, 那么直接就查lower_bound就行, 又要排序, 和重值, 所以我们就用multiset就可以很好的维护了, 合并时记得启发式合并就行.

AC Code

const int maxn = 2e5+5;
vector<int>g[maxn];
multiset<int>st[maxn];
int a[maxn];
void Un(int x, int y) {
    if (sz(st[x]) < sz(st[y])) {
        swap(st[x], st[y]);
    }
    multiset<int>::iterator it = st[y].begin();
    for (; it != st[y].end(); it++) {
        st[x].insert(*it);
    }
}
void dfs(int u) {
    for (int i = 0 ; i < sz(g[u]) ; i ++) {
        dfs(g[u][i]);
        Un(u, g[u][i]);
    }
    multiset<int>::iterator it = st[u].lower_bound(a[u]);
    if (it != st[u].end()) {
        st[u].erase(it);
    }
    st[u].insert(a[u]);
}
void solve() {
    int n;
    scanf("%d", &n);
    for (int i = 1 ; i <= n ; i ++) {
        int x;
        scanf("%d%d", a+i, &x);
        if (x) {
            g[x].pb(i);
        }
    }
    dfs(1);
    printf("%d\n", sz(st[1]));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值