Keras Lambda层

本文介绍如何使用Keras中的Lambda层来实现自定义的数据变换操作。Lambda层适用于不需要学习参数的简单变换,文中通过resize_images函数举例说明了如何创建及使用Lambda层。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果你只是想对流经该层的数据做个变换,而这个变换本身没有什么需要学习的参数,那么直接用Lambda Layer是最合适的了。
导入的方法是
from keras.layers.core import Lambda
Lambda函数接受两个参数,第一个是输入张量对输出张量的映射函数,第二个是输入的shape对输出的shape的映射函数。
    x = Lambda(resize_images)([x, feats])
    (x是输入,feats是输出尺寸)
resize_images是给Lambda的,初始化一个类,[ ]里的两个变量也是给Lambda的,但是导入到resize_images这个函数中
def resize_images(args):
    x = args[0]
    y = args[1]
    // x就是输入的x,y是feats
    return tf.image.resize_images(x, (K.int_shape(y)[1], K.int_shape(y)[2]), align_corners=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AplusX

踩坑不易,打个赏呗~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值